Spaces:
Runtime error
Runtime error
File size: 14,340 Bytes
c0a944c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import math
from typing import Optional
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from einops import rearrange
@dataclass
class LocalArgs:
codebook_size: int = 2048
num_codebooks: int = 4
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L105
class KVCache(nn.Module):
def __init__(
self, n_layer, batch_size, max_seq_len, n_heads, head_dim, dtype, device
):
super().__init__()
cache_shape = (n_layer, batch_size, n_heads, max_seq_len, head_dim)
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
def update(self, layer_idx, input_pos, k_val, v_val):
# k_val: [B, H, S, D]
k_out = self.k_cache
v_out = self.v_cache
k_out[layer_idx, :, :, input_pos:input_pos+1] = k_val
v_out[layer_idx, :, :, input_pos:input_pos+1] = v_val
return k_out[layer_idx], v_out[layer_idx]
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L756
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L767
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L742
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L731
class FeedForward(nn.Module):
def __init__(self, config: LocalArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L615
class Attention(nn.Module):
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True):
super().__init__()
assert config.dim % config.n_head == 0
self.layer_idx = layer_idx
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(
config.dim, total_head_dim, bias=config.attention_qkv_bias
)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.dropout = config.dropout
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self.use_sdpa = use_sdpa
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[int] = None,
kv_cache: Optional[KVCache] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if kv_cache is not None:
k, v = kv_cache.update(self.layer_idx, input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
if self.use_sdpa:
if mask is None:
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
y = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
# No third party attn_mask here to use flash_attention
)
else:
y = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
else:
y = self.eq_scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
return self.wo(y)
def eq_scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
) -> torch.Tensor:
# This is a standard scaled dot product attention
# It's low efficient, but it doesn't raise cuda error
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L599
class TransformerBlock(nn.Module):
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True) -> None:
super().__init__()
self.attention = Attention(config, layer_idx, use_sdpa=use_sdpa)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: int = None, kv_cache: KVCache = None
) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, kv_cache)
out = h + self.feed_forward(self.ffn_norm(h))
return out
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L470
class AudioTransformer(nn.Module):
def __init__(self, config, use_sdpa: bool = False):
super().__init__()
self.config = LocalArgs()
self.config.codebook_size = config.codebook_size
self.config.num_codebooks = config.num_codebooks
if hasattr(config, "min_audio_token_id"):
self.config.min_audio_token_id = config.min_audio_token_id
self.config.max_audio_token_id = config.max_audio_token_id
self.config.n_layer = 4
self.config.dim = 1024
self.config.n_head = 32
self.config.n_local_heads = 32
self.config.intermediate_size = 2816
self.config.head_dim = self.config.dim // self.config.n_head
self.config.norm_eps = 1e-5
self.config.attention_qkv_bias = False
self.config.dropout = 0.0
self.embeddings = nn.Embedding(self.config.codebook_size, self.config.dim)
if self.config.dim != config.hidden_size:
self.input_proj = nn.Linear(config.hidden_size, self.config.dim, bias=False)
else:
self.input_proj = nn.Identity()
self.layers = nn.ModuleList(
TransformerBlock(self.config, layer_idx, use_sdpa=use_sdpa) for layer_idx in range(self.config.n_layer)
)
self.norm = RMSNorm(self.config.dim, eps=self.config.norm_eps)
self.token_head = nn.Linear(self.config.dim, self.config.codebook_size, bias=False)
self.gradient_checkpointing = False
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(self.config.num_codebooks, self.config.dim // self.config.n_head, 10000),
persistent=False,
)
self.register_buffer(
"attention_mask",
torch.tril(torch.ones(self.config.num_codebooks, self.config.num_codebooks, dtype=torch.bool)),
persistent=False,
)
def run_model(self, hidden_states, freqs_cis, attention_mask, input_pos: int = None, kv_cache: KVCache = None):
for layer in self.layers:
# TODO: gradient_checkpointing is disabled because of bug
if False: # self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
freqs_cis,
attention_mask,
use_reentrant=True,
)
else:
hidden_states = layer(hidden_states, freqs_cis, attention_mask, input_pos, kv_cache)
hidden_states = self.norm(hidden_states)
logits = self.token_head(hidden_states)
return logits.float()
# inp: [bs, hidden_size]
# labels: [bs, num_codebooks]
# logits: [bs, num_codebooks, codebook_size]
def forward(self, inp, labels):
bs = inp.shape[0]
hidden_states = self.input_proj(inp)
if self.freqs_cis.dtype != hidden_states.dtype:
self.freqs_cis = self.freqs_cis.to(dtype=hidden_states.dtype)
if labels is not None:
# Training mode
# Get embedding
assert bs == labels.shape[0] and labels.shape[1] == self.config.num_codebooks, f"Labels shape error: {labels.shape}"
hidden_states = [hidden_states[:, None, :], self.embeddings(labels[..., :-1]).to(hidden_states.dtype)]
hidden_states = torch.cat(hidden_states, dim=1) # [bs, num_codebooks, hidden_size]
# Run attention layers
logits = self.run_model(hidden_states, self.freqs_cis, self.attention_mask)
else:
# Inference mode
raise RuntimeError(f"Please call function \"inference\" in inference mode")
return logits
# inp: [bs, seq_len, hidden_size]
# out_tokens: [bs, 1, num_codebooks]
@torch.inference_mode()
def inference(self, inp, temperature=0, top_k=0):
# Only use the last hidden states for token computation
inp = inp[:, -1:, :]
bs = inp.shape[0]
if self.freqs_cis.dtype != inp.dtype:
self.freqs_cis = self.freqs_cis.to(dtype=inp.dtype)
inp = self.input_proj(inp)
# Inference mode
kv_cache = KVCache(
self.config.n_layer,
bs,
self.config.num_codebooks,
self.config.n_head,
self.config.head_dim,
dtype=inp.dtype,
device=inp.device,
)
# Generate one token per step
out_tokens = []
for input_pos in range(self.config.num_codebooks):
inp = inp.reshape(bs, 1, self.config.dim)
local_freqs_cis = self.freqs_cis[input_pos]
local_mask = self.attention_mask[None, None, input_pos, :self.config.num_codebooks]
logits = self.run_model(inp, local_freqs_cis, local_mask, input_pos, kv_cache)
logits = logits.squeeze(dim=1)
# Apply temperature and top-k
if temperature > 0:
logits = logits / temperature
if top_k > 0:
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
# Do sample
probs = nn.functional.softmax(logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1)
next_tokens = next_tokens.reshape(bs, 1, 1)
inp = self.embeddings(next_tokens)
out_tokens.append(next_tokens)
return torch.cat(out_tokens, dim=-1)
|