Spaces:
Runtime error
Runtime error
Mark Shi
commited on
Commit
Β·
c0a944c
1
Parent(s):
789bd04
upload code
Browse files- app.py +253 -0
- audio_transformer.py +354 -0
- examples/character_ref_emb_demo.pkl +3 -0
- examples/test1.mp3 +0 -0
- examples/test_autonomous1.mp3 +0 -0
- infer.py +198 -0
- model.py +1397 -0
- requirements.txt +9 -0
- spkr.py +50 -0
- tokenize_func.py +443 -0
- voila_tokenizer.py +71 -0
app.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
+
import subprocess
|
4 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
5 |
+
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import shutil
|
9 |
+
import pickle
|
10 |
+
import gradio as gr
|
11 |
+
import soundfile as sf
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torchaudio
|
16 |
+
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
|
19 |
+
from infer import load_model, eval_model
|
20 |
+
from spkr import SpeakerEmbedding
|
21 |
+
|
22 |
+
|
23 |
+
spkr_model = SpeakerEmbedding(device="cuda")
|
24 |
+
model, tokenizer, tokenizer_voila, model_type = load_model("maitrix-org/Voila-chat", "maitrix-org/Voila-Tokenizer")
|
25 |
+
default_ref_file = "examples/character_ref_emb_demo.pkl"
|
26 |
+
default_ref_name = "Homer Simpson"
|
27 |
+
million_voice_ref_file = hf_hub_download(repo_id="maitrix-org/Voila-million-voice", filename="character_ref_emb_chunk0.pkl", repo_type="dataset")
|
28 |
+
|
29 |
+
instruction = "You are a smart AI agent created by Maitrix.org."
|
30 |
+
save_path = os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir())
|
31 |
+
|
32 |
+
intro = """**Voila**
|
33 |
+
|
34 |
+
For more demos, please goto [https://voila.maitrix.org](https://voila.maitrix.org)."""
|
35 |
+
|
36 |
+
default_ref_emb_mask_list = pickle.load(open(default_ref_file, "rb"))
|
37 |
+
million_voice_ref_emb_mask_list = pickle.load(open(million_voice_ref_file, "rb"))
|
38 |
+
|
39 |
+
def get_ref_embs(ref_audio):
|
40 |
+
wav, sr = torchaudio.load(ref_audio)
|
41 |
+
ref_embs = spkr_model(wav, sr).cpu()
|
42 |
+
return ref_embs
|
43 |
+
|
44 |
+
def delete_directory(request: gr.Request):
|
45 |
+
if not request.session_hash:
|
46 |
+
return
|
47 |
+
user_dir = Path(f"{save_path}/{str(request.session_hash)}")
|
48 |
+
if user_dir.exists():
|
49 |
+
shutil.rmtree(str(user_dir))
|
50 |
+
|
51 |
+
def add_message(history, message):
|
52 |
+
history.append({"role": "user", "content": {"path": message}})
|
53 |
+
return history, gr.Audio(value=None), gr.Button(interactive=False)
|
54 |
+
|
55 |
+
def call_bot(history, ref_embs, request: gr.Request):
|
56 |
+
formated_history = {
|
57 |
+
"instruction": instruction,
|
58 |
+
"conversations": [{'from': item["role"], 'audio': {"file": item["content"][0]}} for item in history],
|
59 |
+
}
|
60 |
+
formated_history["conversations"].append({"from": "assistant"})
|
61 |
+
print(formated_history)
|
62 |
+
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="cuda")
|
63 |
+
ref_embs_mask = torch.tensor([1], device="cuda")
|
64 |
+
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_aiao", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
|
65 |
+
if 'audio' in out:
|
66 |
+
wav, sr = out['audio']
|
67 |
+
|
68 |
+
user_dir = Path(f"{save_path}/{str(request.session_hash)}")
|
69 |
+
user_dir.mkdir(exist_ok=True)
|
70 |
+
save_name = f"{user_dir}/{len(history)}.wav"
|
71 |
+
sf.write(save_name, wav, sr)
|
72 |
+
|
73 |
+
history.append({"role": "assistant", "content": {"path": save_name}})
|
74 |
+
else:
|
75 |
+
history.append({"role": "assistant", "content": {"text": out['text']}})
|
76 |
+
|
77 |
+
return history
|
78 |
+
|
79 |
+
def run_tts(text, ref_embs):
|
80 |
+
formated_history = {
|
81 |
+
"instruction": "",
|
82 |
+
"conversations": [{'from': "user", 'text': text}],
|
83 |
+
}
|
84 |
+
formated_history["conversations"].append({"from": "assistant"})
|
85 |
+
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="cuda")
|
86 |
+
ref_embs_mask = torch.tensor([1], device="cuda")
|
87 |
+
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_tts", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
|
88 |
+
if 'audio' in out:
|
89 |
+
wav, sr = out['audio']
|
90 |
+
return (sr, wav)
|
91 |
+
else:
|
92 |
+
raise Exception("No audio output")
|
93 |
+
|
94 |
+
def run_asr(audio):
|
95 |
+
formated_history = {
|
96 |
+
"instruction": "",
|
97 |
+
"conversations": [{'from': "user", 'audio': {"file": audio}}],
|
98 |
+
}
|
99 |
+
formated_history["conversations"].append({"from": "assistant"})
|
100 |
+
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_asr", formated_history, None, None, max_new_tokens=512)
|
101 |
+
if 'text' in out:
|
102 |
+
return out['text']
|
103 |
+
else:
|
104 |
+
raise Exception("No text output")
|
105 |
+
|
106 |
+
|
107 |
+
def markdown_ref_name(ref_name):
|
108 |
+
return f"### Current voice id: {ref_name}"
|
109 |
+
|
110 |
+
def random_million_voice():
|
111 |
+
voice_id = random.choice(list(million_voice_ref_emb_mask_list.keys()))
|
112 |
+
return markdown_ref_name(voice_id), million_voice_ref_emb_mask_list[voice_id]
|
113 |
+
|
114 |
+
def get_ref_modules(cur_ref_embs):
|
115 |
+
with gr.Row() as ref_row:
|
116 |
+
with gr.Row():
|
117 |
+
current_ref_name = gr.Markdown(markdown_ref_name(default_ref_name))
|
118 |
+
with gr.Row() as ref_name_row:
|
119 |
+
with gr.Column(scale=2, min_width=160):
|
120 |
+
ref_name_dropdown = gr.Dropdown(
|
121 |
+
choices=list(default_ref_emb_mask_list.keys()),
|
122 |
+
value=default_ref_name,
|
123 |
+
label="Reference voice",
|
124 |
+
min_width=160,
|
125 |
+
)
|
126 |
+
with gr.Column(scale=1, min_width=80):
|
127 |
+
random_ref_button = gr.Button(
|
128 |
+
"Random from Million Voice", size="md",
|
129 |
+
)
|
130 |
+
with gr.Row(visible=False) as ref_audio_row:
|
131 |
+
with gr.Column(scale=2, min_width=80):
|
132 |
+
ref_audio = gr.Audio(
|
133 |
+
sources=["microphone", "upload"],
|
134 |
+
type="filepath",
|
135 |
+
show_label=False,
|
136 |
+
min_width=80,
|
137 |
+
)
|
138 |
+
with gr.Column(scale=1, min_width=80):
|
139 |
+
change_ref_button = gr.Button(
|
140 |
+
"Change voice",
|
141 |
+
interactive=False,
|
142 |
+
min_width=80,
|
143 |
+
)
|
144 |
+
ref_name_dropdown.change(
|
145 |
+
lambda x: (markdown_ref_name(x), default_ref_emb_mask_list[x]),
|
146 |
+
ref_name_dropdown,
|
147 |
+
[current_ref_name, cur_ref_embs]
|
148 |
+
)
|
149 |
+
random_ref_button.click(
|
150 |
+
random_million_voice,
|
151 |
+
None,
|
152 |
+
[current_ref_name, cur_ref_embs],
|
153 |
+
)
|
154 |
+
ref_audio.input(lambda: gr.Button(interactive=True), None, change_ref_button)
|
155 |
+
# If custom ref voice checkbox is checked, show the Audio component to record or upload a reference voice
|
156 |
+
custom_ref_voice = gr.Checkbox(label="Use custom voice", value=False)
|
157 |
+
# Checked: enable audio and button
|
158 |
+
# Unchecked: disable audio and button
|
159 |
+
def custom_ref_voice_change(x, cur_ref_embs, cur_ref_embs_mask):
|
160 |
+
if not x:
|
161 |
+
cur_ref_embs = default_ref_emb_mask_list[default_ref_name]
|
162 |
+
return [gr.Row(visible=not x), gr.Audio(value=None), gr.Row(visible=x), markdown_ref_name("Custom voice"), cur_ref_embs]
|
163 |
+
custom_ref_voice.change(
|
164 |
+
custom_ref_voice_change,
|
165 |
+
[custom_ref_voice, cur_ref_embs],
|
166 |
+
[ref_name_row, ref_audio, ref_audio_row, current_ref_name, cur_ref_embs]
|
167 |
+
)
|
168 |
+
# When change ref button is clicked, get the reference voice and update the reference voice state
|
169 |
+
change_ref_button.click(
|
170 |
+
lambda: gr.Button(interactive=False), None, [change_ref_button]
|
171 |
+
).then(
|
172 |
+
get_ref_embs, ref_audio, cur_ref_embs
|
173 |
+
)
|
174 |
+
return ref_row
|
175 |
+
|
176 |
+
def get_chat_tab():
|
177 |
+
cur_ref_embs = gr.State(default_ref_emb_mask_list[default_ref_name])
|
178 |
+
with gr.Row() as chat_tab:
|
179 |
+
with gr.Column(scale=1):
|
180 |
+
ref_row = get_ref_modules(cur_ref_embs)
|
181 |
+
# Voice chat input
|
182 |
+
chat_input = gr.Audio(
|
183 |
+
sources=["microphone", "upload"],
|
184 |
+
type="filepath",
|
185 |
+
show_label=False,
|
186 |
+
)
|
187 |
+
submit = gr.Button("Submit", interactive=False)
|
188 |
+
gr.Markdown(intro)
|
189 |
+
with gr.Column(scale=9):
|
190 |
+
chatbot = gr.Chatbot(
|
191 |
+
elem_id="chatbot",
|
192 |
+
type="messages",
|
193 |
+
bubble_full_width=False,
|
194 |
+
scale=1,
|
195 |
+
show_copy_button=False,
|
196 |
+
avatar_images=(
|
197 |
+
None, # os.path.join("files", "avatar.png"),
|
198 |
+
None, # os.path.join("files", "avatar.png"),
|
199 |
+
),
|
200 |
+
)
|
201 |
+
|
202 |
+
chat_input.input(lambda: gr.Button(interactive=True), None, submit)
|
203 |
+
submit.click(
|
204 |
+
add_message, [chatbot, chat_input], [chatbot, chat_input, submit]
|
205 |
+
).then(
|
206 |
+
call_bot, [chatbot, cur_ref_embs], chatbot, api_name="bot_response"
|
207 |
+
)
|
208 |
+
return chat_tab
|
209 |
+
|
210 |
+
def get_tts_tab():
|
211 |
+
cur_ref_embs = gr.State(default_ref_emb_mask_list[default_ref_name])
|
212 |
+
with gr.Row() as tts_tab:
|
213 |
+
with gr.Column(scale=1):
|
214 |
+
ref_row = get_ref_modules(cur_ref_embs)
|
215 |
+
gr.Markdown(intro)
|
216 |
+
with gr.Column(scale=9):
|
217 |
+
tts_output = gr.Audio(label="TTS output", interactive=False)
|
218 |
+
with gr.Row():
|
219 |
+
text_input = gr.Textbox(label="Text", placeholder="Text to TTS")
|
220 |
+
submit = gr.Button("Submit")
|
221 |
+
submit.click(
|
222 |
+
run_tts, [text_input, cur_ref_embs], tts_output
|
223 |
+
)
|
224 |
+
return tts_tab
|
225 |
+
|
226 |
+
def get_asr_tab():
|
227 |
+
with gr.Row() as asr_tab:
|
228 |
+
with gr.Column():
|
229 |
+
asr_input = gr.Audio(
|
230 |
+
label="ASR input",
|
231 |
+
sources=["microphone", "upload"],
|
232 |
+
type="filepath",
|
233 |
+
)
|
234 |
+
submit = gr.Button("Submit")
|
235 |
+
gr.Markdown(intro)
|
236 |
+
with gr.Column():
|
237 |
+
asr_output = gr.Textbox(label="ASR output", interactive=False)
|
238 |
+
submit.click(
|
239 |
+
run_asr, [asr_input], asr_output
|
240 |
+
)
|
241 |
+
return asr_tab
|
242 |
+
|
243 |
+
with gr.Blocks(fill_height=True) as demo:
|
244 |
+
with gr.Tab("Chat"):
|
245 |
+
chat_tab = get_chat_tab()
|
246 |
+
with gr.Tab("TTS"):
|
247 |
+
tts_tab = get_tts_tab()
|
248 |
+
with gr.Tab("ASR"):
|
249 |
+
asr_tab = get_asr_tab()
|
250 |
+
demo.unload(delete_directory)
|
251 |
+
|
252 |
+
if __name__ == "__main__":
|
253 |
+
demo.launch()
|
audio_transformer.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch import Tensor
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class LocalArgs:
|
15 |
+
codebook_size: int = 2048
|
16 |
+
num_codebooks: int = 4
|
17 |
+
|
18 |
+
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L105
|
19 |
+
class KVCache(nn.Module):
|
20 |
+
def __init__(
|
21 |
+
self, n_layer, batch_size, max_seq_len, n_heads, head_dim, dtype, device
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
cache_shape = (n_layer, batch_size, n_heads, max_seq_len, head_dim)
|
25 |
+
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
|
26 |
+
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
|
27 |
+
|
28 |
+
def update(self, layer_idx, input_pos, k_val, v_val):
|
29 |
+
# k_val: [B, H, S, D]
|
30 |
+
|
31 |
+
k_out = self.k_cache
|
32 |
+
v_out = self.v_cache
|
33 |
+
k_out[layer_idx, :, :, input_pos:input_pos+1] = k_val
|
34 |
+
v_out[layer_idx, :, :, input_pos:input_pos+1] = v_val
|
35 |
+
|
36 |
+
return k_out[layer_idx], v_out[layer_idx]
|
37 |
+
|
38 |
+
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L756
|
39 |
+
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
|
40 |
+
freqs = 1.0 / (
|
41 |
+
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
|
42 |
+
)
|
43 |
+
t = torch.arange(seq_len, device=freqs.device)
|
44 |
+
freqs = torch.outer(t, freqs)
|
45 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
46 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
47 |
+
return cache
|
48 |
+
|
49 |
+
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L767
|
50 |
+
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
51 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
52 |
+
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
|
53 |
+
x_out2 = torch.stack(
|
54 |
+
[
|
55 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
56 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
57 |
+
],
|
58 |
+
-1,
|
59 |
+
)
|
60 |
+
|
61 |
+
x_out2 = x_out2.flatten(3)
|
62 |
+
return x_out2.type_as(x)
|
63 |
+
|
64 |
+
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L742
|
65 |
+
class RMSNorm(nn.Module):
|
66 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
67 |
+
super().__init__()
|
68 |
+
self.eps = eps
|
69 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
70 |
+
|
71 |
+
def _norm(self, x):
|
72 |
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
73 |
+
|
74 |
+
def forward(self, x: Tensor) -> Tensor:
|
75 |
+
output = self._norm(x.float()).type_as(x)
|
76 |
+
return output * self.weight
|
77 |
+
|
78 |
+
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L731
|
79 |
+
class FeedForward(nn.Module):
|
80 |
+
def __init__(self, config: LocalArgs) -> None:
|
81 |
+
super().__init__()
|
82 |
+
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
83 |
+
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
84 |
+
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
85 |
+
|
86 |
+
def forward(self, x: Tensor) -> Tensor:
|
87 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
88 |
+
|
89 |
+
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L615
|
90 |
+
class Attention(nn.Module):
|
91 |
+
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True):
|
92 |
+
super().__init__()
|
93 |
+
assert config.dim % config.n_head == 0
|
94 |
+
self.layer_idx = layer_idx
|
95 |
+
|
96 |
+
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
97 |
+
# key, query, value projections for all heads, but in a batch
|
98 |
+
self.wqkv = nn.Linear(
|
99 |
+
config.dim, total_head_dim, bias=config.attention_qkv_bias
|
100 |
+
)
|
101 |
+
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
102 |
+
|
103 |
+
self.dropout = config.dropout
|
104 |
+
self.n_head = config.n_head
|
105 |
+
self.head_dim = config.head_dim
|
106 |
+
self.n_local_heads = config.n_local_heads
|
107 |
+
self.dim = config.dim
|
108 |
+
self.use_sdpa = use_sdpa
|
109 |
+
self._register_load_state_dict_pre_hook(self.load_hook)
|
110 |
+
|
111 |
+
def load_hook(self, state_dict, prefix, *args):
|
112 |
+
if prefix + "wq.weight" in state_dict:
|
113 |
+
wq = state_dict.pop(prefix + "wq.weight")
|
114 |
+
wk = state_dict.pop(prefix + "wk.weight")
|
115 |
+
wv = state_dict.pop(prefix + "wv.weight")
|
116 |
+
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self,
|
120 |
+
x: Tensor,
|
121 |
+
freqs_cis: Tensor,
|
122 |
+
mask: Tensor,
|
123 |
+
input_pos: Optional[int] = None,
|
124 |
+
kv_cache: Optional[KVCache] = None,
|
125 |
+
) -> Tensor:
|
126 |
+
bsz, seqlen, _ = x.shape
|
127 |
+
|
128 |
+
kv_size = self.n_local_heads * self.head_dim
|
129 |
+
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
130 |
+
|
131 |
+
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
132 |
+
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
133 |
+
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
134 |
+
|
135 |
+
q = apply_rotary_emb(q, freqs_cis)
|
136 |
+
k = apply_rotary_emb(k, freqs_cis)
|
137 |
+
|
138 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
139 |
+
|
140 |
+
if kv_cache is not None:
|
141 |
+
k, v = kv_cache.update(self.layer_idx, input_pos, k, v)
|
142 |
+
|
143 |
+
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
144 |
+
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
145 |
+
|
146 |
+
if self.use_sdpa:
|
147 |
+
if mask is None:
|
148 |
+
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
149 |
+
y = F.scaled_dot_product_attention(
|
150 |
+
q,
|
151 |
+
k,
|
152 |
+
v,
|
153 |
+
dropout_p=self.dropout if self.training else 0.0,
|
154 |
+
is_causal=True,
|
155 |
+
# No third party attn_mask here to use flash_attention
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
y = F.scaled_dot_product_attention(
|
159 |
+
q,
|
160 |
+
k,
|
161 |
+
v,
|
162 |
+
attn_mask=mask,
|
163 |
+
dropout_p=self.dropout if self.training else 0.0,
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
y = self.eq_scaled_dot_product_attention(
|
167 |
+
q,
|
168 |
+
k,
|
169 |
+
v,
|
170 |
+
attn_mask=mask,
|
171 |
+
dropout_p=self.dropout if self.training else 0.0,
|
172 |
+
)
|
173 |
+
|
174 |
+
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
175 |
+
|
176 |
+
return self.wo(y)
|
177 |
+
|
178 |
+
def eq_scaled_dot_product_attention(
|
179 |
+
self,
|
180 |
+
query,
|
181 |
+
key,
|
182 |
+
value,
|
183 |
+
attn_mask=None,
|
184 |
+
dropout_p=0.0,
|
185 |
+
) -> torch.Tensor:
|
186 |
+
# This is a standard scaled dot product attention
|
187 |
+
# It's low efficient, but it doesn't raise cuda error
|
188 |
+
|
189 |
+
L, S = query.size(-2), key.size(-2)
|
190 |
+
scale_factor = 1 / math.sqrt(query.size(-1))
|
191 |
+
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
|
192 |
+
|
193 |
+
if attn_mask is not None:
|
194 |
+
if attn_mask.dtype == torch.bool:
|
195 |
+
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
196 |
+
else:
|
197 |
+
attn_bias += attn_mask
|
198 |
+
|
199 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
200 |
+
attn_weight += attn_bias
|
201 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
202 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
203 |
+
|
204 |
+
return attn_weight @ value
|
205 |
+
|
206 |
+
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L599
|
207 |
+
class TransformerBlock(nn.Module):
|
208 |
+
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True) -> None:
|
209 |
+
super().__init__()
|
210 |
+
self.attention = Attention(config, layer_idx, use_sdpa=use_sdpa)
|
211 |
+
self.feed_forward = FeedForward(config)
|
212 |
+
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
|
213 |
+
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
|
214 |
+
|
215 |
+
def forward(
|
216 |
+
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: int = None, kv_cache: KVCache = None
|
217 |
+
) -> Tensor:
|
218 |
+
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, kv_cache)
|
219 |
+
out = h + self.feed_forward(self.ffn_norm(h))
|
220 |
+
return out
|
221 |
+
|
222 |
+
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L470
|
223 |
+
class AudioTransformer(nn.Module):
|
224 |
+
def __init__(self, config, use_sdpa: bool = False):
|
225 |
+
super().__init__()
|
226 |
+
self.config = LocalArgs()
|
227 |
+
self.config.codebook_size = config.codebook_size
|
228 |
+
self.config.num_codebooks = config.num_codebooks
|
229 |
+
if hasattr(config, "min_audio_token_id"):
|
230 |
+
self.config.min_audio_token_id = config.min_audio_token_id
|
231 |
+
self.config.max_audio_token_id = config.max_audio_token_id
|
232 |
+
self.config.n_layer = 4
|
233 |
+
self.config.dim = 1024
|
234 |
+
self.config.n_head = 32
|
235 |
+
self.config.n_local_heads = 32
|
236 |
+
self.config.intermediate_size = 2816
|
237 |
+
self.config.head_dim = self.config.dim // self.config.n_head
|
238 |
+
self.config.norm_eps = 1e-5
|
239 |
+
self.config.attention_qkv_bias = False
|
240 |
+
self.config.dropout = 0.0
|
241 |
+
|
242 |
+
self.embeddings = nn.Embedding(self.config.codebook_size, self.config.dim)
|
243 |
+
if self.config.dim != config.hidden_size:
|
244 |
+
self.input_proj = nn.Linear(config.hidden_size, self.config.dim, bias=False)
|
245 |
+
else:
|
246 |
+
self.input_proj = nn.Identity()
|
247 |
+
self.layers = nn.ModuleList(
|
248 |
+
TransformerBlock(self.config, layer_idx, use_sdpa=use_sdpa) for layer_idx in range(self.config.n_layer)
|
249 |
+
)
|
250 |
+
self.norm = RMSNorm(self.config.dim, eps=self.config.norm_eps)
|
251 |
+
self.token_head = nn.Linear(self.config.dim, self.config.codebook_size, bias=False)
|
252 |
+
self.gradient_checkpointing = False
|
253 |
+
|
254 |
+
self.register_buffer(
|
255 |
+
"freqs_cis",
|
256 |
+
precompute_freqs_cis(self.config.num_codebooks, self.config.dim // self.config.n_head, 10000),
|
257 |
+
persistent=False,
|
258 |
+
)
|
259 |
+
self.register_buffer(
|
260 |
+
"attention_mask",
|
261 |
+
torch.tril(torch.ones(self.config.num_codebooks, self.config.num_codebooks, dtype=torch.bool)),
|
262 |
+
persistent=False,
|
263 |
+
)
|
264 |
+
|
265 |
+
def run_model(self, hidden_states, freqs_cis, attention_mask, input_pos: int = None, kv_cache: KVCache = None):
|
266 |
+
for layer in self.layers:
|
267 |
+
# TODO: gradient_checkpointing is disabled because of bug
|
268 |
+
if False: # self.gradient_checkpointing and self.training:
|
269 |
+
hidden_states = self._gradient_checkpointing_func(
|
270 |
+
layer.__call__,
|
271 |
+
hidden_states,
|
272 |
+
freqs_cis,
|
273 |
+
attention_mask,
|
274 |
+
use_reentrant=True,
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
hidden_states = layer(hidden_states, freqs_cis, attention_mask, input_pos, kv_cache)
|
278 |
+
hidden_states = self.norm(hidden_states)
|
279 |
+
logits = self.token_head(hidden_states)
|
280 |
+
return logits.float()
|
281 |
+
|
282 |
+
# inp: [bs, hidden_size]
|
283 |
+
# labels: [bs, num_codebooks]
|
284 |
+
# logits: [bs, num_codebooks, codebook_size]
|
285 |
+
def forward(self, inp, labels):
|
286 |
+
bs = inp.shape[0]
|
287 |
+
|
288 |
+
hidden_states = self.input_proj(inp)
|
289 |
+
if self.freqs_cis.dtype != hidden_states.dtype:
|
290 |
+
self.freqs_cis = self.freqs_cis.to(dtype=hidden_states.dtype)
|
291 |
+
if labels is not None:
|
292 |
+
# Training mode
|
293 |
+
# Get embedding
|
294 |
+
assert bs == labels.shape[0] and labels.shape[1] == self.config.num_codebooks, f"Labels shape error: {labels.shape}"
|
295 |
+
hidden_states = [hidden_states[:, None, :], self.embeddings(labels[..., :-1]).to(hidden_states.dtype)]
|
296 |
+
hidden_states = torch.cat(hidden_states, dim=1) # [bs, num_codebooks, hidden_size]
|
297 |
+
# Run attention layers
|
298 |
+
logits = self.run_model(hidden_states, self.freqs_cis, self.attention_mask)
|
299 |
+
else:
|
300 |
+
# Inference mode
|
301 |
+
raise RuntimeError(f"Please call function \"inference\" in inference mode")
|
302 |
+
return logits
|
303 |
+
|
304 |
+
# inp: [bs, seq_len, hidden_size]
|
305 |
+
# out_tokens: [bs, 1, num_codebooks]
|
306 |
+
@torch.inference_mode()
|
307 |
+
def inference(self, inp, temperature=0, top_k=0):
|
308 |
+
# Only use the last hidden states for token computation
|
309 |
+
inp = inp[:, -1:, :]
|
310 |
+
|
311 |
+
bs = inp.shape[0]
|
312 |
+
if self.freqs_cis.dtype != inp.dtype:
|
313 |
+
self.freqs_cis = self.freqs_cis.to(dtype=inp.dtype)
|
314 |
+
|
315 |
+
inp = self.input_proj(inp)
|
316 |
+
|
317 |
+
# Inference mode
|
318 |
+
kv_cache = KVCache(
|
319 |
+
self.config.n_layer,
|
320 |
+
bs,
|
321 |
+
self.config.num_codebooks,
|
322 |
+
self.config.n_head,
|
323 |
+
self.config.head_dim,
|
324 |
+
dtype=inp.dtype,
|
325 |
+
device=inp.device,
|
326 |
+
)
|
327 |
+
# Generate one token per step
|
328 |
+
out_tokens = []
|
329 |
+
for input_pos in range(self.config.num_codebooks):
|
330 |
+
inp = inp.reshape(bs, 1, self.config.dim)
|
331 |
+
local_freqs_cis = self.freqs_cis[input_pos]
|
332 |
+
local_mask = self.attention_mask[None, None, input_pos, :self.config.num_codebooks]
|
333 |
+
|
334 |
+
logits = self.run_model(inp, local_freqs_cis, local_mask, input_pos, kv_cache)
|
335 |
+
logits = logits.squeeze(dim=1)
|
336 |
+
|
337 |
+
# Apply temperature and top-k
|
338 |
+
if temperature > 0:
|
339 |
+
logits = logits / temperature
|
340 |
+
if top_k > 0:
|
341 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
342 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
343 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
344 |
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
345 |
+
|
346 |
+
# Do sample
|
347 |
+
probs = nn.functional.softmax(logits, dim=-1)
|
348 |
+
next_tokens = torch.multinomial(probs, num_samples=1)
|
349 |
+
|
350 |
+
next_tokens = next_tokens.reshape(bs, 1, 1)
|
351 |
+
inp = self.embeddings(next_tokens)
|
352 |
+
out_tokens.append(next_tokens)
|
353 |
+
|
354 |
+
return torch.cat(out_tokens, dim=-1)
|
examples/character_ref_emb_demo.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a869512a59e4447c19ecb283d6e0097bf71eaf57e8fa98712afd7c41acbbb554
|
3 |
+
size 23264
|
examples/test1.mp3
ADDED
Binary file (19.2 kB). View file
|
|
examples/test_autonomous1.mp3
ADDED
Binary file (52.7 kB). View file
|
|
infer.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import random
|
4 |
+
import jsonlines
|
5 |
+
import soundfile as sf
|
6 |
+
import json
|
7 |
+
import copy
|
8 |
+
import torch
|
9 |
+
from pathlib import Path
|
10 |
+
from threading import Thread
|
11 |
+
|
12 |
+
import torchaudio
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
|
15 |
+
from model import VoilaAudioAlphaModel, VoilaModel, VoilaAutonomousModel
|
16 |
+
from spkr import SpeakerEmbedding
|
17 |
+
from voila_tokenizer import VoilaTokenizer
|
18 |
+
from tokenize_func import (
|
19 |
+
voila_input_format,
|
20 |
+
AUDIO_TOKEN_FORMAT,
|
21 |
+
DEFAULT_AUDIO_TOKEN,
|
22 |
+
DEFAULT_ASSISTANT_TOKEN,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def disable_torch_init():
|
27 |
+
"""
|
28 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
29 |
+
"""
|
30 |
+
import torch
|
31 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
32 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
33 |
+
|
34 |
+
def load_model(model_name, audio_tokenizer_path):
|
35 |
+
disable_torch_init()
|
36 |
+
|
37 |
+
if "Voila-audio" in model_name:
|
38 |
+
model_type = "audio"
|
39 |
+
cls = VoilaAudioAlphaModel
|
40 |
+
elif "Voila-auto" in model_name:
|
41 |
+
model_type = "autonomous"
|
42 |
+
cls = VoilaAutonomousModel
|
43 |
+
else:
|
44 |
+
model_type = "token"
|
45 |
+
cls = VoilaModel
|
46 |
+
|
47 |
+
model = cls.from_pretrained(
|
48 |
+
model_name,
|
49 |
+
torch_dtype=torch.bfloat16,
|
50 |
+
use_flash_attention_2=True,
|
51 |
+
use_cache=True,
|
52 |
+
)
|
53 |
+
model = model.cuda()
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
+
tokenizer_voila = VoilaTokenizer(model_path=audio_tokenizer_path, device="cuda")
|
56 |
+
return model, tokenizer, tokenizer_voila, model_type
|
57 |
+
|
58 |
+
def is_audio_output_task(task_type):
|
59 |
+
return task_type.endswith("ao") or "aiao" in task_type or "tts" in task_type
|
60 |
+
|
61 |
+
def eval_model(model, tokenizer, tokenizer_voila, model_type, task_type, history, ref_embs, ref_embs_mask, max_new_tokens=512):
|
62 |
+
# step1: initializing
|
63 |
+
num_codebooks = model.config.num_codebooks
|
64 |
+
codebook_size = model.config.codebook_size
|
65 |
+
|
66 |
+
AUDIO_MIN_TOKEN_ID = tokenizer.convert_tokens_to_ids(AUDIO_TOKEN_FORMAT.format(0))
|
67 |
+
assert isinstance(AUDIO_MIN_TOKEN_ID, int)
|
68 |
+
AUDIO_MAX_TOKEN_ID = tokenizer.convert_tokens_to_ids(AUDIO_TOKEN_FORMAT.format(codebook_size*num_codebooks-1))
|
69 |
+
assert isinstance(AUDIO_MAX_TOKEN_ID, int)
|
70 |
+
AUDIO_TOKEN_ID = tokenizer.convert_tokens_to_ids(DEFAULT_AUDIO_TOKEN)
|
71 |
+
assert isinstance(AUDIO_TOKEN_ID, int)
|
72 |
+
ASSISTANT_TOKEN_ID = tokenizer.convert_tokens_to_ids(DEFAULT_ASSISTANT_TOKEN)
|
73 |
+
assert isinstance(ASSISTANT_TOKEN_ID, int)
|
74 |
+
|
75 |
+
# step2: set infer config
|
76 |
+
data_cfg = {
|
77 |
+
"input_type": model_type,
|
78 |
+
"task_type": task_type,
|
79 |
+
"num_codebooks": num_codebooks,
|
80 |
+
"codebook_size": codebook_size,
|
81 |
+
}
|
82 |
+
|
83 |
+
# step3: infer
|
84 |
+
input_ids, audio_datas, audio_data_masks, streaming_user_input_audio_tokens = voila_input_format(history, tokenizer, tokenizer_voila, data_cfg)
|
85 |
+
|
86 |
+
# prepare user_streaming_generator to simulate streaming user input
|
87 |
+
def get_input_generator(all_tokens):
|
88 |
+
assert all_tokens is not None
|
89 |
+
for i in range(len(all_tokens[0])):
|
90 |
+
yield all_tokens[:,i]
|
91 |
+
|
92 |
+
if model_type == "autonomous":
|
93 |
+
input_generator = get_input_generator(torch.as_tensor(streaming_user_input_audio_tokens).cuda())
|
94 |
+
input_ids = [torch.as_tensor([input]).transpose(1,2).cuda() for input in input_ids] # transpose to [bs, seq, num_codebooks]
|
95 |
+
input_ids = torch.cat(input_ids, dim=2) # concat to [bs, seq, num_codebooks*2]
|
96 |
+
else:
|
97 |
+
input_ids = torch.as_tensor([input_ids]).transpose(1,2).cuda() # transpose to [bs, seq, num_codebooks]
|
98 |
+
gen_params = {
|
99 |
+
"input_ids": input_ids,
|
100 |
+
"ref_embs": ref_embs,
|
101 |
+
"ref_embs_mask": ref_embs_mask,
|
102 |
+
"max_new_tokens": max_new_tokens,
|
103 |
+
"pad_token_id": tokenizer.pad_token_id,
|
104 |
+
"eos_token_id": tokenizer.eos_token_id,
|
105 |
+
"llm_audio_token_id": AUDIO_TOKEN_ID,
|
106 |
+
"min_audio_token_id": AUDIO_MIN_TOKEN_ID,
|
107 |
+
"temperature": 0.2,
|
108 |
+
"top_k": 50,
|
109 |
+
"audio_temperature": 0.8,
|
110 |
+
"audio_top_k": 50,
|
111 |
+
}
|
112 |
+
if model_type == "audio":
|
113 |
+
audio_datas = torch.tensor([audio_datas], dtype=torch.bfloat16).cuda()
|
114 |
+
audio_data_masks = torch.tensor([audio_data_masks]).cuda()
|
115 |
+
gen_params["audio_datas"] = audio_datas
|
116 |
+
gen_params["audio_data_masks"] = audio_data_masks
|
117 |
+
elif model_type == "autonomous":
|
118 |
+
gen_params["input_generator"] = input_generator
|
119 |
+
gen_params["llm_assistant_token_id"] = ASSISTANT_TOKEN_ID
|
120 |
+
print(f"Input str: {tokenizer.decode(input_ids[0, :, 0])}")
|
121 |
+
with torch.inference_mode():
|
122 |
+
outputs = model.run_generate(**gen_params)
|
123 |
+
|
124 |
+
if model_type == "autonomous":
|
125 |
+
outputs = outputs.chunk(2, dim=2)[1]
|
126 |
+
outputs = outputs[0].cpu().tolist()
|
127 |
+
|
128 |
+
predict_outputs = outputs[input_ids.shape[1]:]
|
129 |
+
text_outputs = []
|
130 |
+
audio_outputs = []
|
131 |
+
for _ in range(num_codebooks):
|
132 |
+
audio_outputs.append([])
|
133 |
+
for item in predict_outputs:
|
134 |
+
if item[0] >= AUDIO_MIN_TOKEN_ID and item[0] <= AUDIO_MAX_TOKEN_ID:
|
135 |
+
for n, at in enumerate(item):
|
136 |
+
audio_outputs[n].append((at - AUDIO_MIN_TOKEN_ID)%codebook_size)
|
137 |
+
elif item[0] != tokenizer.eos_token_id:
|
138 |
+
text_outputs.append(item[0])
|
139 |
+
|
140 |
+
out ={
|
141 |
+
'text': tokenizer.decode(text_outputs),
|
142 |
+
}
|
143 |
+
if is_audio_output_task(task_type):
|
144 |
+
audio_values = tokenizer_voila.decode(torch.tensor(audio_outputs).cuda())
|
145 |
+
out['audio'] = (audio_values.detach().cpu().numpy(), 16000)
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
parser = argparse.ArgumentParser()
|
151 |
+
parser.add_argument("--instruction", type=str, default="")
|
152 |
+
parser.add_argument("--input-text", type=str, default=None)
|
153 |
+
parser.add_argument("--input-audio", type=str, default=None)
|
154 |
+
parser.add_argument("--result-path", type=str, default="output")
|
155 |
+
parser.add_argument("--ref-audio", type=str, default="examples/test1.mp3")
|
156 |
+
parser.add_argument("--model-name", type=str, default="maitrix-org/Voila-chat")
|
157 |
+
parser.add_argument("--audio-tokenizer-path", type=str, default="maitrix-org/Voila-Tokenizer")
|
158 |
+
parser.add_argument("--task-type", type=str, default="chat_aiao")
|
159 |
+
args = parser.parse_args()
|
160 |
+
|
161 |
+
assert args.model_name in [
|
162 |
+
"maitrix-org/Voila-audio-alpha",
|
163 |
+
"maitrix-org/Voila-base",
|
164 |
+
"maitrix-org/Voila-chat",
|
165 |
+
"maitrix-org/Voila-autonomous-preview",
|
166 |
+
]
|
167 |
+
|
168 |
+
# step0: Model loading
|
169 |
+
model, tokenizer, tokenizer_voila, model_type = load_model(args.model_name, args.audio_tokenizer_path)
|
170 |
+
|
171 |
+
# step1: prepare inputs
|
172 |
+
Path(args.result_path).mkdir(exist_ok=True, parents=True)
|
173 |
+
history = {
|
174 |
+
"instruction": args.instruction,
|
175 |
+
"conversations": [],
|
176 |
+
}
|
177 |
+
if args.input_text is not None:
|
178 |
+
history["conversations"].append({"from": "user", "text": args.input_text})
|
179 |
+
elif args.input_audio is not None:
|
180 |
+
history["conversations"].append({"from": "user", "audio": {"file": args.input_audio}})
|
181 |
+
else:
|
182 |
+
raise Exception("Please provide atleast one of --input-text and --input-audio")
|
183 |
+
history["conversations"].append({"from": "assistant"})
|
184 |
+
|
185 |
+
# step2: encode ref
|
186 |
+
ref_embs, ref_embs_mask = None, None
|
187 |
+
if is_audio_output_task(args.task_type):
|
188 |
+
spkr_model = SpeakerEmbedding(device="cuda")
|
189 |
+
wav, sr = torchaudio.load(args.ref_audio)
|
190 |
+
ref_embs = spkr_model(wav, sr)
|
191 |
+
ref_embs_mask = torch.tensor([1]).cuda()
|
192 |
+
|
193 |
+
out = eval_model(model, tokenizer, tokenizer_voila, model_type, args.task_type, history, ref_embs, ref_embs_mask)
|
194 |
+
print(f"Output str: {out['text']}")
|
195 |
+
if 'audio' in out:
|
196 |
+
wav, sr = out['audio']
|
197 |
+
save_name = f"{args.result_path}/out.wav"
|
198 |
+
sf.write(save_name, wav, sr)
|
model.py
ADDED
@@ -0,0 +1,1397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
|
10 |
+
from transformers.cache_utils import Cache, DynamicCache
|
11 |
+
from transformers.utils import ModelOutput, logging
|
12 |
+
from transformers.models.llama.modeling_llama import LlamaModel, LlamaPreTrainedModel
|
13 |
+
|
14 |
+
from audio_transformer import AudioTransformer
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
# Copied from https://github.com/pytorch/audio/blob/main/src/torchaudio/models/wav2vec2/components.py#L43
|
20 |
+
class LayerNorm(torch.nn.LayerNorm):
|
21 |
+
"""Layer norm with transpose"""
|
22 |
+
|
23 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
24 |
+
x = input.transpose(-2, -1)
|
25 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
26 |
+
x = x.transpose(-2, -1)
|
27 |
+
return x
|
28 |
+
|
29 |
+
# Copied from https://github.com/pytorch/audio/blob/main/src/torchaudio/models/wav2vec2/components.py#L53
|
30 |
+
class ConvLayerBlock(torch.nn.Module):
|
31 |
+
"""Convolution unit of FeatureExtractor"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels: int,
|
36 |
+
out_channels: int,
|
37 |
+
kernel_size: int,
|
38 |
+
stride: int,
|
39 |
+
bias: bool,
|
40 |
+
layer_norm: Optional[torch.nn.Module],
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
self.kernel_size = kernel_size
|
44 |
+
self.stride = stride
|
45 |
+
self.layer_norm = layer_norm
|
46 |
+
self.conv = torch.nn.Conv1d(
|
47 |
+
in_channels=in_channels,
|
48 |
+
out_channels=out_channels,
|
49 |
+
kernel_size=kernel_size,
|
50 |
+
stride=stride,
|
51 |
+
bias=bias,
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward(
|
55 |
+
self,
|
56 |
+
x: torch.Tensor,
|
57 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
58 |
+
"""
|
59 |
+
Args:
|
60 |
+
x (Tensor): Shape: ``[batch, in_channels, in_frame]``.
|
61 |
+
Returns:
|
62 |
+
Tensor: Shape ``[batch, out_channels, out_frames]``.
|
63 |
+
Optional[Tensor]: Shape ``[batch, ]``.
|
64 |
+
"""
|
65 |
+
x = self.conv(x)
|
66 |
+
if self.layer_norm is not None:
|
67 |
+
x = self.layer_norm(x)
|
68 |
+
x = torch.nn.functional.gelu(x)
|
69 |
+
|
70 |
+
return x
|
71 |
+
|
72 |
+
# Copied from https://github.com/pytorch/audio/blob/main/src/torchaudio/models/wav2vec2/components.py#L146
|
73 |
+
class FeatureProjection(torch.nn.Module):
|
74 |
+
"""Layer that connects FeatureExtractor and Encoder
|
75 |
+
|
76 |
+
Projects features to encoder dimension.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
in_features (int): Input feature dim.
|
80 |
+
out_features (int): Output feature dim.
|
81 |
+
dropout (float): Dropout probability.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
in_features: int,
|
87 |
+
out_features: int,
|
88 |
+
dropout=0.1,
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
self.layer_norm = torch.nn.LayerNorm(in_features)
|
92 |
+
self.projection = torch.nn.Linear(
|
93 |
+
in_features,
|
94 |
+
out_features,
|
95 |
+
)
|
96 |
+
self.dropout = torch.nn.Dropout(dropout)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
"""
|
100 |
+
Args:
|
101 |
+
x (Tensor):
|
102 |
+
Feature Tensor. shape: ``[batch, frame, in_feature]``
|
103 |
+
Returns:
|
104 |
+
Tensor: Projected features. ``[batch, frame, out_feature]``.
|
105 |
+
"""
|
106 |
+
x = self.layer_norm(x)
|
107 |
+
x = self.projection(x)
|
108 |
+
x = self.dropout(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
# Modified from https://github.com/pytorch/audio/blob/main/src/torchaudio/models/wav2vec2/components.py#L102
|
112 |
+
class FeatureExtractor(torch.nn.Module):
|
113 |
+
"""Extract features from audio
|
114 |
+
|
115 |
+
Args:
|
116 |
+
conv_layers (nn.ModuleList):
|
117 |
+
convolution layers
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
shapes=[(512, 10, 5), (512, 3, 2), (512, 3, 2), (512, 3, 2), (512, 3, 2), (512, 2, 2), (512, 2, 2)],
|
123 |
+
bias=False,
|
124 |
+
norm_mode="group_norm",
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
if norm_mode not in ["group_norm", "layer_norm"]:
|
128 |
+
raise ValueError("Invalid norm mode")
|
129 |
+
blocks = []
|
130 |
+
in_channels = 1
|
131 |
+
for i, (out_channels, kernel_size, stride) in enumerate(shapes):
|
132 |
+
normalization = None
|
133 |
+
if norm_mode == "group_norm" and i == 0:
|
134 |
+
normalization = torch.nn.GroupNorm(
|
135 |
+
num_groups=out_channels,
|
136 |
+
num_channels=out_channels,
|
137 |
+
affine=True,
|
138 |
+
)
|
139 |
+
elif norm_mode == "layer_norm":
|
140 |
+
normalization = LayerNorm(
|
141 |
+
normalized_shape=out_channels,
|
142 |
+
elementwise_affine=True,
|
143 |
+
)
|
144 |
+
blocks.append(
|
145 |
+
ConvLayerBlock(
|
146 |
+
in_channels=in_channels,
|
147 |
+
out_channels=out_channels,
|
148 |
+
kernel_size=kernel_size,
|
149 |
+
stride=stride,
|
150 |
+
bias=bias,
|
151 |
+
layer_norm=normalization,
|
152 |
+
)
|
153 |
+
)
|
154 |
+
in_channels = out_channels
|
155 |
+
self.conv_layers = torch.nn.ModuleList(blocks)
|
156 |
+
|
157 |
+
def forward(
|
158 |
+
self,
|
159 |
+
x: torch.Tensor,
|
160 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
161 |
+
"""
|
162 |
+
Args:
|
163 |
+
x (Tensor):
|
164 |
+
Input Tensor representing a batch of audio,
|
165 |
+
shape: ``[batch, time]``.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Tensor:
|
169 |
+
The resulting feature, shape: ``[batch, frame, feature]``
|
170 |
+
Optional[Tensor]:
|
171 |
+
Valid length of each output sample. shape: ``[batch, ]``.
|
172 |
+
"""
|
173 |
+
if x.ndim != 2:
|
174 |
+
raise ValueError(f"Expected the input Tensor to be 2D (batch, time). Found: {list(x.shape)}")
|
175 |
+
|
176 |
+
x = x.unsqueeze(1) # (batch, channel==1, frame)
|
177 |
+
for layer in self.conv_layers:
|
178 |
+
x = layer(x) # (batch, feature, frame)
|
179 |
+
x = x.transpose(1, 2) # (batch, frame, feature)
|
180 |
+
return x
|
181 |
+
|
182 |
+
# Modified from https://github.com/pytorch/audio/blob/main/src/torchaudio/models/wav2vec2/components.py#L102
|
183 |
+
class FeatureExtractorAdapter(torch.nn.Module):
|
184 |
+
"""Extract features from audio
|
185 |
+
|
186 |
+
Args:
|
187 |
+
conv_layers (nn.ModuleList):
|
188 |
+
convolution layers
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
shapes=(512, 512, 2, 2),
|
194 |
+
hidden_size=2048,
|
195 |
+
bias=False,
|
196 |
+
norm_mode="group_norm",
|
197 |
+
):
|
198 |
+
super().__init__()
|
199 |
+
if norm_mode not in ["group_norm", "layer_norm"]:
|
200 |
+
raise ValueError("Invalid norm mode")
|
201 |
+
in_channels, out_channels, kernel_size, stride = shapes
|
202 |
+
normalization = LayerNorm(
|
203 |
+
normalized_shape=out_channels,
|
204 |
+
elementwise_affine=True,
|
205 |
+
)
|
206 |
+
self.conv_layers = ConvLayerBlock(
|
207 |
+
in_channels=in_channels,
|
208 |
+
out_channels=out_channels,
|
209 |
+
kernel_size=kernel_size,
|
210 |
+
stride=stride,
|
211 |
+
bias=False,
|
212 |
+
layer_norm=normalization,
|
213 |
+
)
|
214 |
+
self.feat_proj = FeatureProjection(out_channels, hidden_size)
|
215 |
+
|
216 |
+
def forward(
|
217 |
+
self,
|
218 |
+
x: torch.Tensor,
|
219 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
220 |
+
"""
|
221 |
+
Args:
|
222 |
+
x (Tensor):
|
223 |
+
Input Tensor representing a batch of audio,
|
224 |
+
shape: ``[batch, time]``.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
Tensor:
|
228 |
+
The resulting feature, shape: ``[batch, frame, feature]``
|
229 |
+
Optional[Tensor]:
|
230 |
+
Valid length of each output sample. shape: ``[batch, ]``.
|
231 |
+
"""
|
232 |
+
x = x.transpose(1, 2) # (batch, feature, frame)
|
233 |
+
x = self.conv_layers(x) # (batch, feature, frame)
|
234 |
+
x = x.transpose(1, 2) # (batch, frame, feature)
|
235 |
+
x = self.feat_proj(x)
|
236 |
+
return x
|
237 |
+
|
238 |
+
@dataclass
|
239 |
+
class VoilaOutput(ModelOutput):
|
240 |
+
"""
|
241 |
+
Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_outputs.py#L678
|
242 |
+
|
243 |
+
Base class for Voila outputs.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
247 |
+
Language modeling loss (for next-token prediction).
|
248 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
249 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
250 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
251 |
+
The hidden state of the last attention layer.
|
252 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
253 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
254 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
255 |
+
|
256 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
257 |
+
`past_key_values` input) to speed up sequential decoding.
|
258 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
259 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
260 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
261 |
+
|
262 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
263 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
264 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
265 |
+
sequence_length)`.
|
266 |
+
|
267 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
268 |
+
heads.
|
269 |
+
"""
|
270 |
+
|
271 |
+
loss: Optional[torch.FloatTensor] = None
|
272 |
+
logits: torch.FloatTensor = None
|
273 |
+
last_hidden_state: torch.FloatTensor = None
|
274 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
275 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
276 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
277 |
+
voila_pred: Optional[torch.FloatTensor] = None
|
278 |
+
|
279 |
+
|
280 |
+
# Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L1103
|
281 |
+
class VoilaModel(LlamaPreTrainedModel):
|
282 |
+
_tied_weights_keys = ["lm_head.weight"]
|
283 |
+
|
284 |
+
def __init__(self, config):
|
285 |
+
super().__init__(config)
|
286 |
+
self.model = LlamaModel(config)
|
287 |
+
self.vocab_size = config.vocab_size
|
288 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
289 |
+
self.pad_vocab_size_multiple = 64
|
290 |
+
|
291 |
+
self.ref_emb_linear = nn.Linear(256, config.hidden_size, bias=True)
|
292 |
+
self.audio_transformer = AudioTransformer(config, use_sdpa=False)
|
293 |
+
|
294 |
+
# Initialize weights and apply final processing
|
295 |
+
self.post_init()
|
296 |
+
|
297 |
+
def get_input_embeddings(self):
|
298 |
+
return self.model.embed_tokens
|
299 |
+
|
300 |
+
def set_input_embeddings(self, value):
|
301 |
+
self.model.embed_tokens = value
|
302 |
+
|
303 |
+
def get_output_embeddings(self):
|
304 |
+
return self.lm_head
|
305 |
+
|
306 |
+
def set_output_embeddings(self, new_embeddings):
|
307 |
+
self.lm_head = new_embeddings
|
308 |
+
|
309 |
+
def set_decoder(self, decoder):
|
310 |
+
self.model = decoder
|
311 |
+
|
312 |
+
def get_decoder(self):
|
313 |
+
return self.model
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
input_ids: torch.LongTensor = None,
|
318 |
+
attention_mask: Optional[torch.Tensor] = None,
|
319 |
+
position_ids: Optional[torch.LongTensor] = None,
|
320 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
321 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
322 |
+
labels: Optional[torch.LongTensor] = None,
|
323 |
+
audio_labels: Optional[torch.LongTensor] = None,
|
324 |
+
ref_embs: Optional[List[torch.Tensor]] = None,
|
325 |
+
ref_embs_mask: Optional[torch.LongTensor] = None,
|
326 |
+
use_cache: Optional[bool] = None,
|
327 |
+
output_attentions: Optional[bool] = None,
|
328 |
+
output_hidden_states: Optional[bool] = None,
|
329 |
+
return_dict: Optional[bool] = None,
|
330 |
+
cache_position: Optional[torch.LongTensor] = None,
|
331 |
+
num_logits_to_keep: int = 0,
|
332 |
+
) -> Union[Tuple, VoilaOutput]:
|
333 |
+
r"""
|
334 |
+
Args:
|
335 |
+
input_ids: [bs, seq_len, num_codebooks]
|
336 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
337 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
338 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
339 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
340 |
+
"""
|
341 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
342 |
+
output_hidden_states = (
|
343 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
344 |
+
)
|
345 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
346 |
+
|
347 |
+
if input_ids is not None and inputs_embeds is not None:
|
348 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
349 |
+
if inputs_embeds is None:
|
350 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
351 |
+
assert len(inputs_embeds.shape) == 4
|
352 |
+
if len(inputs_embeds.shape) == 4:
|
353 |
+
inputs_embeds = inputs_embeds.mean(dim=2)
|
354 |
+
|
355 |
+
if self.training or \
|
356 |
+
(past_key_values is None and ref_embs is not None) or \
|
357 |
+
(past_key_values is not None and past_key_values.get_seq_length() < 4 and ref_embs is not None):
|
358 |
+
ref_embs = self.ref_emb_linear(ref_embs.to(self.ref_emb_linear.weight.dtype))
|
359 |
+
ref_embs = ref_embs * ref_embs_mask.unsqueeze(-1).unsqueeze(-1)
|
360 |
+
# (padding_left,padding_right,padding_top,padding_bottom,padding_front,padding_back)
|
361 |
+
padding = (0, 0, 4, inputs_embeds.shape[1] - 5, 0, 0)
|
362 |
+
ref_embs = torch.nn.functional.pad(ref_embs, padding, mode='constant', value=0.0)
|
363 |
+
inputs_embeds = inputs_embeds + ref_embs
|
364 |
+
|
365 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
366 |
+
outputs = self.model(
|
367 |
+
attention_mask=attention_mask,
|
368 |
+
position_ids=position_ids,
|
369 |
+
past_key_values=past_key_values,
|
370 |
+
inputs_embeds=inputs_embeds,
|
371 |
+
use_cache=use_cache,
|
372 |
+
output_attentions=output_attentions,
|
373 |
+
output_hidden_states=output_hidden_states,
|
374 |
+
return_dict=return_dict,
|
375 |
+
cache_position=cache_position,
|
376 |
+
)
|
377 |
+
|
378 |
+
hidden_states = outputs[0]
|
379 |
+
if self.config.pretraining_tp > 1:
|
380 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
381 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
382 |
+
logits = torch.cat(logits, dim=-1)
|
383 |
+
else:
|
384 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
385 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
386 |
+
|
387 |
+
loss = None
|
388 |
+
|
389 |
+
if not return_dict:
|
390 |
+
output = (logits,) + outputs[1:]
|
391 |
+
return (loss,) + output if loss is not None else output
|
392 |
+
|
393 |
+
return VoilaOutput(
|
394 |
+
loss=loss,
|
395 |
+
logits=logits,
|
396 |
+
last_hidden_state=hidden_states,
|
397 |
+
past_key_values=outputs.past_key_values,
|
398 |
+
hidden_states=outputs.hidden_states,
|
399 |
+
attentions=outputs.attentions,
|
400 |
+
)
|
401 |
+
|
402 |
+
def _prepare_inputs_for_generation(
|
403 |
+
self, input_ids, ref_embs=None, ref_embs_mask=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
404 |
+
):
|
405 |
+
if past_key_values is not None and past_key_values.get_seq_length() > 0:
|
406 |
+
if isinstance(past_key_values, Cache):
|
407 |
+
cache_length = past_key_values.get_seq_length()
|
408 |
+
past_length = past_key_values.seen_tokens
|
409 |
+
max_cache_length = past_key_values.get_max_cache_shape()
|
410 |
+
else:
|
411 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
412 |
+
max_cache_length = None
|
413 |
+
|
414 |
+
# Keep only the unprocessed tokens:
|
415 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
416 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
417 |
+
# input)
|
418 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
419 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
420 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
421 |
+
# input_ids based on the past_length.
|
422 |
+
elif past_length < input_ids.shape[1]:
|
423 |
+
input_ids = input_ids[:, past_length:]
|
424 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
425 |
+
|
426 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
427 |
+
if (
|
428 |
+
max_cache_length is not None
|
429 |
+
and attention_mask is not None
|
430 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
431 |
+
):
|
432 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
433 |
+
|
434 |
+
position_ids = kwargs.get("position_ids", None)
|
435 |
+
if attention_mask is not None and position_ids is None:
|
436 |
+
# create position_ids on the fly for batch generation
|
437 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
438 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
439 |
+
if past_key_values:
|
440 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
441 |
+
|
442 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
443 |
+
if inputs_embeds is None and \
|
444 |
+
(past_key_values is None or past_key_values.get_seq_length() <= 0):
|
445 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
446 |
+
if inputs_embeds is not None and \
|
447 |
+
(past_key_values is None or past_key_values.get_seq_length() <= 0):
|
448 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "ref_embs": ref_embs, "ref_embs_mask": ref_embs_mask}
|
449 |
+
else:
|
450 |
+
model_inputs = {"input_ids": input_ids, "ref_embs": None}
|
451 |
+
|
452 |
+
model_inputs.update(
|
453 |
+
{
|
454 |
+
"position_ids": position_ids,
|
455 |
+
"past_key_values": past_key_values,
|
456 |
+
"use_cache": kwargs.get("use_cache"),
|
457 |
+
"attention_mask": attention_mask,
|
458 |
+
}
|
459 |
+
)
|
460 |
+
return model_inputs
|
461 |
+
|
462 |
+
def _update_model_kwargs_for_generation(
|
463 |
+
self,
|
464 |
+
outputs,
|
465 |
+
model_kwargs: Dict[str, Any],
|
466 |
+
num_new_token: int = 1,
|
467 |
+
) -> Dict[str, Any]:
|
468 |
+
# update past_key_values
|
469 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
470 |
+
|
471 |
+
# update attention mask
|
472 |
+
if "attention_mask" in model_kwargs:
|
473 |
+
attention_mask = model_kwargs["attention_mask"]
|
474 |
+
model_kwargs["attention_mask"] = torch.cat(
|
475 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], num_new_token))], dim=-1
|
476 |
+
)
|
477 |
+
|
478 |
+
return model_kwargs
|
479 |
+
|
480 |
+
def _prepare_attention_mask_for_generation(
|
481 |
+
self,
|
482 |
+
inputs: torch.Tensor,
|
483 |
+
pad_token_id: Optional[int],
|
484 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
485 |
+
) -> torch.LongTensor:
|
486 |
+
is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
|
487 |
+
is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
|
488 |
+
if isinstance(eos_token_id, int):
|
489 |
+
eos_token_id = [eos_token_id]
|
490 |
+
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id)
|
491 |
+
|
492 |
+
# Check if input is input_ids and padded -> only then is attention_mask defined
|
493 |
+
if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
|
494 |
+
return inputs.ne(pad_token_id).long()
|
495 |
+
else:
|
496 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
|
497 |
+
|
498 |
+
@torch.inference_mode()
|
499 |
+
def run_generate(
|
500 |
+
self,
|
501 |
+
input_ids: torch.LongTensor,
|
502 |
+
ref_embs: Optional[List[torch.Tensor]] = None,
|
503 |
+
ref_embs_mask: Optional[torch.LongTensor] = None,
|
504 |
+
max_new_tokens: Optional[int] = 128,
|
505 |
+
pad_token_id: Optional[int] = None,
|
506 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
507 |
+
streamer: Optional["BaseStreamer"] = None,
|
508 |
+
llm_audio_token_id: Optional[int] = None,
|
509 |
+
min_audio_token_id: Optional[int] = None,
|
510 |
+
temperature=0.2,
|
511 |
+
top_k=50,
|
512 |
+
audio_temperature=0.2,
|
513 |
+
audio_top_k=50,
|
514 |
+
):
|
515 |
+
assert eos_token_id is not None and pad_token_id is not None, "eos_token_id and pad_token_id are required for inference"
|
516 |
+
assert llm_audio_token_id is not None and min_audio_token_id is not None, "llm_audio_token_id and min_audio_token_id are required for inference"
|
517 |
+
assert len(input_ids.shape) == 2 or len(input_ids.shape) == 3, f"input_ids is supposed to be [batch, seq_len] or [batch, seq_len, num_codebooks], and got {input_ids.shape}"
|
518 |
+
|
519 |
+
eos_token_id_tensor = torch.tensor([eos_token_id]).to(input_ids.device)
|
520 |
+
|
521 |
+
# keep track of which sequences are already finished
|
522 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
523 |
+
|
524 |
+
# Extend input_ids with additional num_codebooks dim
|
525 |
+
if len(input_ids.shape) == 2:
|
526 |
+
input_ids = input_ids[:, :, None].expand(1, 1, self.config.num_codebooks)
|
527 |
+
|
528 |
+
this_peer_finished = False # used by synced_gpus only
|
529 |
+
max_length = input_ids.shape[1] + max_new_tokens
|
530 |
+
|
531 |
+
model_kwargs = {
|
532 |
+
"use_cache": True,
|
533 |
+
"past_key_values": DynamicCache(),
|
534 |
+
"attention_mask": self._prepare_attention_mask_for_generation(
|
535 |
+
input_ids, pad_token_id, eos_token_id
|
536 |
+
),
|
537 |
+
}
|
538 |
+
# auto-regressive generation
|
539 |
+
while True:
|
540 |
+
# prepare model inputs
|
541 |
+
model_inputs = self._prepare_inputs_for_generation(
|
542 |
+
input_ids,
|
543 |
+
ref_embs=ref_embs,
|
544 |
+
ref_embs_mask=ref_embs_mask,
|
545 |
+
**model_kwargs
|
546 |
+
)
|
547 |
+
|
548 |
+
# forward pass to get next token
|
549 |
+
outputs = self(
|
550 |
+
**model_inputs,
|
551 |
+
return_dict=True,
|
552 |
+
)
|
553 |
+
audio_tokens = self.audio_transformer.inference(
|
554 |
+
outputs.last_hidden_state,
|
555 |
+
temperature=audio_temperature,
|
556 |
+
top_k=audio_top_k,
|
557 |
+
)
|
558 |
+
audio_tokens = torch.stack(
|
559 |
+
[
|
560 |
+
audio_tokens[:, :, ci] + min_audio_token_id + ci*self.config.codebook_size
|
561 |
+
for ci in range(self.config.num_codebooks)
|
562 |
+
],
|
563 |
+
dim=2,
|
564 |
+
)
|
565 |
+
|
566 |
+
next_token_logits = outputs.logits[:, -1, :]
|
567 |
+
|
568 |
+
# pre-process distribution
|
569 |
+
# Apply temperature and top-k
|
570 |
+
if temperature > 0:
|
571 |
+
next_token_logits = next_token_logits / temperature
|
572 |
+
if top_k > 0:
|
573 |
+
top_k = min(top_k, next_token_logits.size(-1)) # Safety check
|
574 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
575 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
576 |
+
next_token_logits = next_token_logits.masked_fill(indices_to_remove, -float("Inf"))
|
577 |
+
|
578 |
+
# sample
|
579 |
+
probs = nn.functional.softmax(next_token_logits, dim=-1)
|
580 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
581 |
+
|
582 |
+
# finished sentences should have their next token be a padding token
|
583 |
+
if eos_token_id is not None:
|
584 |
+
if pad_token_id is None:
|
585 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
586 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
587 |
+
|
588 |
+
# Append NUM_CODEBOOK text tokens or audio_tokens
|
589 |
+
if len(next_tokens.shape) == 1:
|
590 |
+
next_tokens = next_tokens[:, None, None].expand(-1, 1, self.config.num_codebooks)
|
591 |
+
next_tokens = torch.where(next_tokens==llm_audio_token_id, audio_tokens, next_tokens)
|
592 |
+
|
593 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=1)
|
594 |
+
if streamer is not None:
|
595 |
+
streamer.put(next_tokens.cpu())
|
596 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
597 |
+
outputs, model_kwargs
|
598 |
+
)
|
599 |
+
|
600 |
+
# if eos_token was found in one sentence, set sentence to finished
|
601 |
+
if eos_token_id_tensor is not None:
|
602 |
+
unfinished_sequences = unfinished_sequences.mul(
|
603 |
+
next_tokens[:, :, 0].ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=1)
|
604 |
+
)
|
605 |
+
|
606 |
+
# stop when each sentence is finished
|
607 |
+
if unfinished_sequences.max() == 0:
|
608 |
+
this_peer_finished = True
|
609 |
+
|
610 |
+
# stop if we exceed the maximum length
|
611 |
+
if input_ids.shape[1] >= max_length:
|
612 |
+
this_peer_finished = True
|
613 |
+
|
614 |
+
if this_peer_finished:
|
615 |
+
break
|
616 |
+
|
617 |
+
if streamer is not None:
|
618 |
+
streamer.end()
|
619 |
+
|
620 |
+
return input_ids
|
621 |
+
|
622 |
+
|
623 |
+
# Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L1103
|
624 |
+
class VoilaAudioAlphaModel(LlamaPreTrainedModel):
|
625 |
+
_tied_weights_keys = ["lm_head.weight"]
|
626 |
+
|
627 |
+
def __init__(self, config):
|
628 |
+
super().__init__(config)
|
629 |
+
self.model = LlamaModel(config)
|
630 |
+
self.vocab_size = config.vocab_size
|
631 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
632 |
+
self.pad_vocab_size_multiple = 64
|
633 |
+
|
634 |
+
|
635 |
+
self.ref_emb_linear = nn.Linear(256, config.hidden_size, bias=True)
|
636 |
+
self.audio_transformer = AudioTransformer(config, use_sdpa=False)
|
637 |
+
|
638 |
+
self.feature_extractor = FeatureExtractor()
|
639 |
+
self.audio_feature_extractor_adapter = FeatureExtractorAdapter(hidden_size=config.hidden_size)
|
640 |
+
|
641 |
+
# Initialize weights and apply final processing
|
642 |
+
self.post_init()
|
643 |
+
|
644 |
+
def get_input_embeddings(self):
|
645 |
+
return self.model.embed_tokens
|
646 |
+
|
647 |
+
def set_input_embeddings(self, value):
|
648 |
+
self.model.embed_tokens = value
|
649 |
+
|
650 |
+
def get_output_embeddings(self):
|
651 |
+
return self.lm_head
|
652 |
+
|
653 |
+
def set_output_embeddings(self, new_embeddings):
|
654 |
+
self.lm_head = new_embeddings
|
655 |
+
|
656 |
+
def set_decoder(self, decoder):
|
657 |
+
self.model = decoder
|
658 |
+
|
659 |
+
def get_decoder(self):
|
660 |
+
return self.model
|
661 |
+
|
662 |
+
def forward(
|
663 |
+
self,
|
664 |
+
input_ids: torch.LongTensor = None,
|
665 |
+
attention_mask: Optional[torch.Tensor] = None,
|
666 |
+
position_ids: Optional[torch.LongTensor] = None,
|
667 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
668 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
669 |
+
labels: Optional[torch.LongTensor] = None,
|
670 |
+
audio_labels: Optional[torch.LongTensor] = None,
|
671 |
+
ref_embs: Optional[List[torch.Tensor]] = None,
|
672 |
+
ref_embs_mask: Optional[torch.LongTensor] = None,
|
673 |
+
audio_datas: Optional[torch.FloatTensor] = None,
|
674 |
+
audio_data_masks: Optional[torch.LongTensor] = None,
|
675 |
+
use_cache: Optional[bool] = None,
|
676 |
+
output_attentions: Optional[bool] = None,
|
677 |
+
output_hidden_states: Optional[bool] = None,
|
678 |
+
return_dict: Optional[bool] = None,
|
679 |
+
cache_position: Optional[torch.LongTensor] = None,
|
680 |
+
num_logits_to_keep: int = 0,
|
681 |
+
) -> Union[Tuple, VoilaOutput]:
|
682 |
+
r"""
|
683 |
+
Args:
|
684 |
+
input_ids: [bs, seq_len, num_codebooks]
|
685 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
686 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
687 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
688 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
689 |
+
"""
|
690 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
691 |
+
output_hidden_states = (
|
692 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
693 |
+
)
|
694 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
695 |
+
|
696 |
+
if input_ids is not None and inputs_embeds is not None:
|
697 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
698 |
+
if inputs_embeds is None:
|
699 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
700 |
+
assert len(inputs_embeds.shape) == 4
|
701 |
+
if len(inputs_embeds.shape) == 4:
|
702 |
+
inputs_embeds = inputs_embeds.mean(dim=2)
|
703 |
+
|
704 |
+
if self.training or \
|
705 |
+
(past_key_values is None and ref_embs is not None) or \
|
706 |
+
(past_key_values is not None and past_key_values.get_seq_length() < 4 and ref_embs is not None):
|
707 |
+
ref_embs = self.ref_emb_linear(ref_embs.to(self.ref_emb_linear.weight.dtype))
|
708 |
+
ref_embs = ref_embs * ref_embs_mask.unsqueeze(-1).unsqueeze(-1)
|
709 |
+
# (padding_left,padding_right,padding_top,padding_bottom,padding_front,padding_back)
|
710 |
+
padding = (0, 0, 4, inputs_embeds.shape[1] - 5, 0, 0)
|
711 |
+
ref_embs = torch.nn.functional.pad(ref_embs, padding, mode='constant', value=0.0)
|
712 |
+
inputs_embeds = inputs_embeds + ref_embs
|
713 |
+
|
714 |
+
if self.training or audio_datas is not None:
|
715 |
+
audio_embeds = self.feature_extractor(audio_datas)
|
716 |
+
audio_embeds = self.audio_feature_extractor_adapter(audio_embeds)
|
717 |
+
audio_embeds = audio_embeds * audio_data_masks[..., None]
|
718 |
+
inputs_embeds = inputs_embeds + audio_embeds
|
719 |
+
|
720 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
721 |
+
outputs = self.model(
|
722 |
+
attention_mask=attention_mask,
|
723 |
+
position_ids=position_ids,
|
724 |
+
past_key_values=past_key_values,
|
725 |
+
inputs_embeds=inputs_embeds,
|
726 |
+
use_cache=use_cache,
|
727 |
+
output_attentions=output_attentions,
|
728 |
+
output_hidden_states=output_hidden_states,
|
729 |
+
return_dict=return_dict,
|
730 |
+
cache_position=cache_position,
|
731 |
+
)
|
732 |
+
|
733 |
+
hidden_states = outputs[0]
|
734 |
+
if self.config.pretraining_tp > 1:
|
735 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
736 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
737 |
+
logits = torch.cat(logits, dim=-1)
|
738 |
+
else:
|
739 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
740 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
741 |
+
|
742 |
+
loss = None
|
743 |
+
if labels is not None:
|
744 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
745 |
+
logits = logits.float()
|
746 |
+
# We shift tokens and labels in dataloader
|
747 |
+
shift_logits = logits.contiguous()
|
748 |
+
shift_labels = labels.contiguous()
|
749 |
+
# Flatten the tokens
|
750 |
+
loss_fct = CrossEntropyLoss()
|
751 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
752 |
+
shift_labels = shift_labels.view(-1)
|
753 |
+
# Enable model parallelism
|
754 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
755 |
+
loss = loss_fct(shift_logits, shift_labels)
|
756 |
+
|
757 |
+
if audio_labels is not None:
|
758 |
+
au_mask = (audio_labels >= 0).all(dim=-1)
|
759 |
+
au_hidden_states = hidden_states[au_mask]
|
760 |
+
au_audio_labels = audio_labels[au_mask]
|
761 |
+
if len(au_hidden_states) <= 0:
|
762 |
+
au_hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1])
|
763 |
+
au_audio_labels = torch.zeros_like(audio_labels).reshape(-1, self.config.num_codebooks)
|
764 |
+
loss_weight = 0.0
|
765 |
+
else:
|
766 |
+
loss_weight = 1.0
|
767 |
+
au_logits = self.audio_transformer(au_hidden_states, au_audio_labels)
|
768 |
+
# We shift tokens and labels in dataloader
|
769 |
+
shift_au_logits = au_logits.contiguous()
|
770 |
+
shift_audio_labels = au_audio_labels.contiguous()
|
771 |
+
# Flatten the tokens
|
772 |
+
loss_fct = CrossEntropyLoss()
|
773 |
+
shift_au_logits = shift_au_logits.view(-1, self.config.codebook_size)
|
774 |
+
shift_audio_labels = shift_audio_labels.view(-1)
|
775 |
+
# Enable model parallelism
|
776 |
+
shift_audio_labels = shift_audio_labels.to(shift_au_logits.device)
|
777 |
+
au_loss = loss_fct(shift_au_logits, shift_audio_labels)
|
778 |
+
|
779 |
+
loss += au_loss * loss_weight
|
780 |
+
else:
|
781 |
+
# au_tokens = self.audio_transformer.inference(hidden_states)
|
782 |
+
pass
|
783 |
+
|
784 |
+
if not return_dict:
|
785 |
+
output = (logits,) + outputs[1:]
|
786 |
+
return (loss,) + output if loss is not None else output
|
787 |
+
|
788 |
+
return VoilaOutput(
|
789 |
+
loss=loss,
|
790 |
+
logits=logits,
|
791 |
+
last_hidden_state=hidden_states,
|
792 |
+
past_key_values=outputs.past_key_values,
|
793 |
+
hidden_states=outputs.hidden_states,
|
794 |
+
attentions=outputs.attentions,
|
795 |
+
)
|
796 |
+
|
797 |
+
def _prepare_inputs_for_generation(
|
798 |
+
self, input_ids, ref_embs=None, ref_embs_mask=None, audio_datas=None, audio_data_masks=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
799 |
+
):
|
800 |
+
if past_key_values is not None and past_key_values.get_seq_length() > 0:
|
801 |
+
if isinstance(past_key_values, Cache):
|
802 |
+
cache_length = past_key_values.get_seq_length()
|
803 |
+
past_length = past_key_values.seen_tokens
|
804 |
+
max_cache_length = past_key_values.get_max_cache_shape()
|
805 |
+
else:
|
806 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
807 |
+
max_cache_length = None
|
808 |
+
|
809 |
+
# Keep only the unprocessed tokens:
|
810 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
811 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
812 |
+
# input)
|
813 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
814 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
815 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
816 |
+
# input_ids based on the past_length.
|
817 |
+
elif past_length < input_ids.shape[1]:
|
818 |
+
input_ids = input_ids[:, past_length:]
|
819 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
820 |
+
|
821 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
822 |
+
if (
|
823 |
+
max_cache_length is not None
|
824 |
+
and attention_mask is not None
|
825 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
826 |
+
):
|
827 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
828 |
+
|
829 |
+
position_ids = kwargs.get("position_ids", None)
|
830 |
+
if attention_mask is not None and position_ids is None:
|
831 |
+
# create position_ids on the fly for batch generation
|
832 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
833 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
834 |
+
if past_key_values:
|
835 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
836 |
+
|
837 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
838 |
+
if inputs_embeds is None and \
|
839 |
+
(past_key_values is None or past_key_values.get_seq_length() <= 0):
|
840 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
841 |
+
if inputs_embeds is not None and \
|
842 |
+
(past_key_values is None or past_key_values.get_seq_length() <= 0):
|
843 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "ref_embs": ref_embs, "ref_embs_mask": ref_embs_mask, "audio_datas": audio_datas, "audio_data_masks": audio_data_masks}
|
844 |
+
else:
|
845 |
+
model_inputs = {"input_ids": input_ids, "ref_embs": None, "audio_datas": None, "audio_data_masks": None}
|
846 |
+
|
847 |
+
model_inputs.update(
|
848 |
+
{
|
849 |
+
"position_ids": position_ids,
|
850 |
+
"past_key_values": past_key_values,
|
851 |
+
"use_cache": kwargs.get("use_cache"),
|
852 |
+
"attention_mask": attention_mask,
|
853 |
+
}
|
854 |
+
)
|
855 |
+
return model_inputs
|
856 |
+
|
857 |
+
def _update_model_kwargs_for_generation(
|
858 |
+
self,
|
859 |
+
outputs,
|
860 |
+
model_kwargs: Dict[str, Any],
|
861 |
+
num_new_token: int = 1,
|
862 |
+
) -> Dict[str, Any]:
|
863 |
+
# update past_key_values
|
864 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
865 |
+
|
866 |
+
# update attention mask
|
867 |
+
if "attention_mask" in model_kwargs:
|
868 |
+
attention_mask = model_kwargs["attention_mask"]
|
869 |
+
model_kwargs["attention_mask"] = torch.cat(
|
870 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], num_new_token))], dim=-1
|
871 |
+
)
|
872 |
+
|
873 |
+
return model_kwargs
|
874 |
+
|
875 |
+
def _prepare_attention_mask_for_generation(
|
876 |
+
self,
|
877 |
+
inputs: torch.Tensor,
|
878 |
+
pad_token_id: Optional[int],
|
879 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
880 |
+
) -> torch.LongTensor:
|
881 |
+
is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
|
882 |
+
is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
|
883 |
+
if isinstance(eos_token_id, int):
|
884 |
+
eos_token_id = [eos_token_id]
|
885 |
+
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id)
|
886 |
+
|
887 |
+
# Check if input is input_ids and padded -> only then is attention_mask defined
|
888 |
+
if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
|
889 |
+
return inputs.ne(pad_token_id).long()
|
890 |
+
else:
|
891 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
|
892 |
+
|
893 |
+
@torch.inference_mode()
|
894 |
+
def run_generate(
|
895 |
+
self,
|
896 |
+
input_ids: torch.LongTensor,
|
897 |
+
ref_embs: Optional[List[torch.Tensor]] = None,
|
898 |
+
ref_embs_mask: Optional[torch.LongTensor] = None,
|
899 |
+
audio_datas: Optional[torch.FloatTensor] = None,
|
900 |
+
audio_data_masks: Optional[torch.LongTensor] = None,
|
901 |
+
max_new_tokens: Optional[int] = 128,
|
902 |
+
pad_token_id: Optional[int] = None,
|
903 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
904 |
+
streamer: Optional["BaseStreamer"] = None,
|
905 |
+
llm_audio_token_id: Optional[int] = None,
|
906 |
+
min_audio_token_id: Optional[int] = None,
|
907 |
+
temperature=0.2,
|
908 |
+
top_k=50,
|
909 |
+
audio_temperature=0.2,
|
910 |
+
audio_top_k=50,
|
911 |
+
):
|
912 |
+
assert eos_token_id is not None and pad_token_id is not None, "eos_token_id and pad_token_id are required for inference"
|
913 |
+
assert llm_audio_token_id is not None and min_audio_token_id is not None, "llm_audio_token_id and min_audio_token_id are required for inference"
|
914 |
+
assert len(input_ids.shape) == 2 or len(input_ids.shape) == 3, f"input_ids is supposed to be [batch, seq_len] or [batch, seq_len, num_codebooks], and got {input_ids.shape}"
|
915 |
+
|
916 |
+
eos_token_id_tensor = torch.tensor([eos_token_id]).to(input_ids.device)
|
917 |
+
|
918 |
+
# keep track of which sequences are already finished
|
919 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
920 |
+
|
921 |
+
# Extend input_ids with additional num_codebooks dim
|
922 |
+
if len(input_ids.shape) == 2:
|
923 |
+
input_ids = input_ids[:, :, None].expand(1, 1, self.config.num_codebooks)
|
924 |
+
|
925 |
+
this_peer_finished = False # used by synced_gpus only
|
926 |
+
max_length = input_ids.shape[1] + max_new_tokens
|
927 |
+
|
928 |
+
model_kwargs = {
|
929 |
+
"use_cache": True,
|
930 |
+
"past_key_values": DynamicCache(),
|
931 |
+
"attention_mask": self._prepare_attention_mask_for_generation(
|
932 |
+
input_ids, pad_token_id, eos_token_id
|
933 |
+
),
|
934 |
+
}
|
935 |
+
# auto-regressive generation
|
936 |
+
while True:
|
937 |
+
# prepare model inputs
|
938 |
+
model_inputs = self._prepare_inputs_for_generation(
|
939 |
+
input_ids,
|
940 |
+
ref_embs=ref_embs,
|
941 |
+
ref_embs_mask=ref_embs_mask,
|
942 |
+
audio_datas=audio_datas,
|
943 |
+
audio_data_masks=audio_data_masks,
|
944 |
+
**model_kwargs
|
945 |
+
)
|
946 |
+
|
947 |
+
# forward pass to get next token
|
948 |
+
outputs = self(
|
949 |
+
**model_inputs,
|
950 |
+
return_dict=True,
|
951 |
+
)
|
952 |
+
audio_tokens = self.audio_transformer.inference(
|
953 |
+
outputs.last_hidden_state,
|
954 |
+
temperature=audio_temperature,
|
955 |
+
top_k=audio_top_k,
|
956 |
+
)
|
957 |
+
audio_tokens = torch.stack(
|
958 |
+
[
|
959 |
+
audio_tokens[:, :, ci] + min_audio_token_id + ci*self.config.codebook_size
|
960 |
+
for ci in range(self.config.num_codebooks)
|
961 |
+
],
|
962 |
+
dim=2,
|
963 |
+
)
|
964 |
+
|
965 |
+
next_token_logits = outputs.logits[:, -1, :]
|
966 |
+
|
967 |
+
# pre-process distribution
|
968 |
+
# Apply temperature and top-k
|
969 |
+
if temperature > 0:
|
970 |
+
next_token_logits = next_token_logits / temperature
|
971 |
+
if top_k > 0:
|
972 |
+
top_k = min(top_k, next_token_logits.size(-1)) # Safety check
|
973 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
974 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
975 |
+
next_token_logits = next_token_logits.masked_fill(indices_to_remove, -float("Inf"))
|
976 |
+
|
977 |
+
# sample
|
978 |
+
probs = nn.functional.softmax(next_token_logits, dim=-1)
|
979 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
980 |
+
|
981 |
+
# finished sentences should have their next token be a padding token
|
982 |
+
if eos_token_id is not None:
|
983 |
+
if pad_token_id is None:
|
984 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
985 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
986 |
+
|
987 |
+
# Append NUM_CODEBOOK text tokens or audio_tokens
|
988 |
+
if len(next_tokens.shape) == 1:
|
989 |
+
next_tokens = next_tokens[:, None, None].expand(-1, 1, self.config.num_codebooks)
|
990 |
+
next_tokens = torch.where(next_tokens==llm_audio_token_id, audio_tokens, next_tokens)
|
991 |
+
|
992 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=1)
|
993 |
+
if streamer is not None:
|
994 |
+
streamer.put(next_tokens.cpu())
|
995 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
996 |
+
outputs, model_kwargs
|
997 |
+
)
|
998 |
+
|
999 |
+
# if eos_token was found in one sentence, set sentence to finished
|
1000 |
+
if eos_token_id_tensor is not None:
|
1001 |
+
unfinished_sequences = unfinished_sequences.mul(
|
1002 |
+
next_tokens[:, :, 0].ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=1)
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
# stop when each sentence is finished
|
1006 |
+
if unfinished_sequences.max() == 0:
|
1007 |
+
this_peer_finished = True
|
1008 |
+
|
1009 |
+
# stop if we exceed the maximum length
|
1010 |
+
if input_ids.shape[1] >= max_length:
|
1011 |
+
this_peer_finished = True
|
1012 |
+
|
1013 |
+
if this_peer_finished:
|
1014 |
+
break
|
1015 |
+
|
1016 |
+
if streamer is not None:
|
1017 |
+
streamer.end()
|
1018 |
+
|
1019 |
+
return input_ids
|
1020 |
+
|
1021 |
+
|
1022 |
+
# Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L1103
|
1023 |
+
class VoilaAutonomousModel(LlamaPreTrainedModel):
|
1024 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1025 |
+
|
1026 |
+
def __init__(self, config):
|
1027 |
+
super().__init__(config)
|
1028 |
+
self.model = LlamaModel(config)
|
1029 |
+
self.vocab_size = config.vocab_size
|
1030 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1031 |
+
self.pad_vocab_size_multiple = 64
|
1032 |
+
|
1033 |
+
self.ref_emb_linear = nn.Linear(256, config.hidden_size, bias=True)
|
1034 |
+
self.audio_transformer = AudioTransformer(config, use_sdpa=False)
|
1035 |
+
self.voila_predictor = nn.Sequential(nn.Linear(config.hidden_size, 2, bias=True),)
|
1036 |
+
|
1037 |
+
# Initialize weights and apply final processing
|
1038 |
+
self.post_init()
|
1039 |
+
|
1040 |
+
def get_input_embeddings(self):
|
1041 |
+
return self.model.embed_tokens
|
1042 |
+
|
1043 |
+
def set_input_embeddings(self, value):
|
1044 |
+
self.model.embed_tokens = value
|
1045 |
+
|
1046 |
+
def get_output_embeddings(self):
|
1047 |
+
return self.lm_head
|
1048 |
+
|
1049 |
+
def set_output_embeddings(self, new_embeddings):
|
1050 |
+
self.lm_head = new_embeddings
|
1051 |
+
|
1052 |
+
def set_decoder(self, decoder):
|
1053 |
+
self.model = decoder
|
1054 |
+
|
1055 |
+
def get_decoder(self):
|
1056 |
+
return self.model
|
1057 |
+
|
1058 |
+
def forward(
|
1059 |
+
self,
|
1060 |
+
input_ids: torch.LongTensor = None,
|
1061 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1062 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1063 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1064 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1065 |
+
labels: Optional[torch.LongTensor] = None,
|
1066 |
+
audio_labels: Optional[torch.LongTensor] = None,
|
1067 |
+
voila_labels: Optional[torch.LongTensor] = None,
|
1068 |
+
ref_embs: Optional[List[torch.Tensor]] = None,
|
1069 |
+
ref_embs_mask: Optional[torch.LongTensor] = None,
|
1070 |
+
use_cache: Optional[bool] = None,
|
1071 |
+
output_attentions: Optional[bool] = None,
|
1072 |
+
output_hidden_states: Optional[bool] = None,
|
1073 |
+
return_dict: Optional[bool] = None,
|
1074 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1075 |
+
num_logits_to_keep: int = 0,
|
1076 |
+
) -> Union[Tuple, VoilaOutput]:
|
1077 |
+
r"""
|
1078 |
+
Args:
|
1079 |
+
input_ids: [bs, seq_len, num_codebooks]
|
1080 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1081 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1082 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1083 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1084 |
+
"""
|
1085 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1086 |
+
output_hidden_states = (
|
1087 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1088 |
+
)
|
1089 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1090 |
+
|
1091 |
+
if input_ids is not None and inputs_embeds is not None:
|
1092 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1093 |
+
if inputs_embeds is None:
|
1094 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
1095 |
+
assert len(inputs_embeds.shape) == 4
|
1096 |
+
if len(inputs_embeds.shape) == 4:
|
1097 |
+
inputs_embeds = inputs_embeds.mean(dim=2)
|
1098 |
+
|
1099 |
+
if self.training or \
|
1100 |
+
(past_key_values is None and ref_embs is not None) or \
|
1101 |
+
(past_key_values is not None and past_key_values.get_seq_length() < 4 and ref_embs is not None):
|
1102 |
+
ref_embs = self.ref_emb_linear(ref_embs.to(self.ref_emb_linear.weight.dtype))
|
1103 |
+
ref_embs = ref_embs * ref_embs_mask.unsqueeze(-1).unsqueeze(-1)
|
1104 |
+
# (padding_left,padding_right,padding_top,padding_bottom,padding_front,padding_back)
|
1105 |
+
padding = (0, 0, 4, inputs_embeds.shape[1] - 5, 0, 0)
|
1106 |
+
ref_embs = torch.nn.functional.pad(ref_embs, padding, mode='constant', value=0.0)
|
1107 |
+
inputs_embeds = inputs_embeds + ref_embs
|
1108 |
+
|
1109 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1110 |
+
outputs = self.model(
|
1111 |
+
attention_mask=attention_mask,
|
1112 |
+
position_ids=position_ids,
|
1113 |
+
past_key_values=past_key_values,
|
1114 |
+
inputs_embeds=inputs_embeds,
|
1115 |
+
use_cache=use_cache,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
output_hidden_states=output_hidden_states,
|
1118 |
+
return_dict=return_dict,
|
1119 |
+
cache_position=cache_position,
|
1120 |
+
)
|
1121 |
+
|
1122 |
+
hidden_states = outputs[0]
|
1123 |
+
if self.config.pretraining_tp > 1:
|
1124 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1125 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1126 |
+
logits = torch.cat(logits, dim=-1)
|
1127 |
+
else:
|
1128 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1129 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1130 |
+
|
1131 |
+
# calc voila_predict_loss
|
1132 |
+
voila_pred = self.voila_predictor(hidden_states)
|
1133 |
+
voila_pred = voila_pred.float()
|
1134 |
+
|
1135 |
+
loss = None
|
1136 |
+
|
1137 |
+
if not return_dict:
|
1138 |
+
output = (logits,) + outputs[1:]
|
1139 |
+
return (loss,) + output if loss is not None else output
|
1140 |
+
|
1141 |
+
return VoilaOutput(
|
1142 |
+
loss=loss,
|
1143 |
+
logits=logits,
|
1144 |
+
last_hidden_state=hidden_states,
|
1145 |
+
past_key_values=outputs.past_key_values,
|
1146 |
+
hidden_states=outputs.hidden_states,
|
1147 |
+
attentions=outputs.attentions,
|
1148 |
+
voila_pred=voila_pred,
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
def _prepare_inputs_for_generation(
|
1152 |
+
self, input_ids, ref_embs=None, ref_embs_mask=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1153 |
+
):
|
1154 |
+
if past_key_values is not None and past_key_values.get_seq_length() > 0:
|
1155 |
+
if isinstance(past_key_values, Cache):
|
1156 |
+
cache_length = past_key_values.get_seq_length()
|
1157 |
+
past_length = past_key_values.seen_tokens
|
1158 |
+
max_cache_length = past_key_values.get_max_cache_shape()
|
1159 |
+
else:
|
1160 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1161 |
+
max_cache_length = None
|
1162 |
+
|
1163 |
+
# Keep only the unprocessed tokens:
|
1164 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1165 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1166 |
+
# input)
|
1167 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1168 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1169 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1170 |
+
# input_ids based on the past_length.
|
1171 |
+
elif past_length < input_ids.shape[1]:
|
1172 |
+
input_ids = input_ids[:, past_length:]
|
1173 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1174 |
+
|
1175 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1176 |
+
if (
|
1177 |
+
max_cache_length is not None
|
1178 |
+
and attention_mask is not None
|
1179 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1180 |
+
):
|
1181 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1182 |
+
|
1183 |
+
position_ids = kwargs.get("position_ids", None)
|
1184 |
+
if attention_mask is not None and position_ids is None:
|
1185 |
+
# create position_ids on the fly for batch generation
|
1186 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1187 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1188 |
+
if past_key_values:
|
1189 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1190 |
+
|
1191 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1192 |
+
if inputs_embeds is None and \
|
1193 |
+
(past_key_values is None or past_key_values.get_seq_length() <= 0):
|
1194 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
1195 |
+
if inputs_embeds is not None and \
|
1196 |
+
(past_key_values is None or past_key_values.get_seq_length() <= 0):
|
1197 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "ref_embs": ref_embs, "ref_embs_mask": ref_embs_mask}
|
1198 |
+
else:
|
1199 |
+
model_inputs = {"input_ids": input_ids, "ref_embs": None}
|
1200 |
+
|
1201 |
+
model_inputs.update(
|
1202 |
+
{
|
1203 |
+
"position_ids": position_ids,
|
1204 |
+
"past_key_values": past_key_values,
|
1205 |
+
"use_cache": kwargs.get("use_cache"),
|
1206 |
+
"attention_mask": attention_mask,
|
1207 |
+
}
|
1208 |
+
)
|
1209 |
+
return model_inputs
|
1210 |
+
|
1211 |
+
def _update_model_kwargs_for_generation(
|
1212 |
+
self,
|
1213 |
+
outputs,
|
1214 |
+
model_kwargs: Dict[str, Any],
|
1215 |
+
num_new_token: int = 1,
|
1216 |
+
) -> Dict[str, Any]:
|
1217 |
+
# update past_key_values
|
1218 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
1219 |
+
|
1220 |
+
# update attention mask
|
1221 |
+
if "attention_mask" in model_kwargs:
|
1222 |
+
attention_mask = model_kwargs["attention_mask"]
|
1223 |
+
model_kwargs["attention_mask"] = torch.cat(
|
1224 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], num_new_token))], dim=-1
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
return model_kwargs
|
1228 |
+
|
1229 |
+
def _prepare_attention_mask_for_generation(
|
1230 |
+
self,
|
1231 |
+
inputs: torch.Tensor,
|
1232 |
+
pad_token_id: Optional[int],
|
1233 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
1234 |
+
) -> torch.LongTensor:
|
1235 |
+
is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
|
1236 |
+
is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
|
1237 |
+
if isinstance(eos_token_id, int):
|
1238 |
+
eos_token_id = [eos_token_id]
|
1239 |
+
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id)
|
1240 |
+
|
1241 |
+
# Check if input is input_ids and padded -> only then is attention_mask defined
|
1242 |
+
if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
|
1243 |
+
return inputs.ne(pad_token_id).long()
|
1244 |
+
else:
|
1245 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
|
1246 |
+
|
1247 |
+
@torch.inference_mode()
|
1248 |
+
def run_generate(
|
1249 |
+
self,
|
1250 |
+
input_ids: torch.LongTensor,
|
1251 |
+
input_generator,
|
1252 |
+
ref_embs: Optional[List[torch.Tensor]] = None,
|
1253 |
+
ref_embs_mask: Optional[torch.LongTensor] = None,
|
1254 |
+
max_new_tokens: Optional[int] = 128,
|
1255 |
+
pad_token_id: Optional[int] = None,
|
1256 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
1257 |
+
streamer: Optional["BaseStreamer"] = None,
|
1258 |
+
llm_audio_token_id: Optional[int] = None,
|
1259 |
+
min_audio_token_id: Optional[int] = None,
|
1260 |
+
llm_assistant_token_id: Optional[int] = None,
|
1261 |
+
temperature=0.2,
|
1262 |
+
top_k=50,
|
1263 |
+
audio_temperature=0.8,
|
1264 |
+
audio_top_k=50,
|
1265 |
+
):
|
1266 |
+
assert eos_token_id is not None and pad_token_id is not None, "eos_token_id and pad_token_id are required for inference"
|
1267 |
+
assert llm_audio_token_id is not None and min_audio_token_id is not None, "llm_audio_token_id and min_audio_token_id are required for inference"
|
1268 |
+
assert len(input_ids.shape) == 2 or len(input_ids.shape) == 3, f"input_ids is supposed to be [batch, seq_len] or [batch, seq_len, num_codebooks], and got {input_ids.shape}"
|
1269 |
+
|
1270 |
+
eos_token_id_tensor = torch.tensor([eos_token_id]).to(input_ids.device)
|
1271 |
+
|
1272 |
+
# keep track of which sequences are already finished
|
1273 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
1274 |
+
|
1275 |
+
# Extend input_ids with additional num_codebooks dim
|
1276 |
+
input_ids = input_ids.clone()
|
1277 |
+
if len(input_ids.shape) == 2:
|
1278 |
+
input_ids = input_ids[:, :, None].expand(1, 1, self.config.num_codebooks)
|
1279 |
+
|
1280 |
+
this_peer_finished = False # used by synced_gpus only
|
1281 |
+
max_length = input_ids.shape[1] + max_new_tokens
|
1282 |
+
|
1283 |
+
model_kwargs = {
|
1284 |
+
"use_cache": True,
|
1285 |
+
"past_key_values": DynamicCache(),
|
1286 |
+
"attention_mask": self._prepare_attention_mask_for_generation(
|
1287 |
+
input_ids, pad_token_id, eos_token_id
|
1288 |
+
),
|
1289 |
+
}
|
1290 |
+
speaking = False
|
1291 |
+
# auto-regressive generation
|
1292 |
+
while True:
|
1293 |
+
# prepare model inputs
|
1294 |
+
model_inputs = self._prepare_inputs_for_generation(
|
1295 |
+
input_ids,
|
1296 |
+
ref_embs=ref_embs,
|
1297 |
+
ref_embs_mask=ref_embs_mask,
|
1298 |
+
**model_kwargs
|
1299 |
+
)
|
1300 |
+
|
1301 |
+
# forward pass to get next token
|
1302 |
+
outputs = self(
|
1303 |
+
**model_inputs,
|
1304 |
+
return_dict=True,
|
1305 |
+
)
|
1306 |
+
audio_tokens = self.audio_transformer.inference(
|
1307 |
+
outputs.last_hidden_state,
|
1308 |
+
temperature=audio_temperature,
|
1309 |
+
top_k=audio_top_k,
|
1310 |
+
)
|
1311 |
+
audio_tokens = torch.stack(
|
1312 |
+
[
|
1313 |
+
audio_tokens[:, :, ci] + min_audio_token_id + ci*self.config.codebook_size
|
1314 |
+
for ci in range(self.config.num_codebooks)
|
1315 |
+
],
|
1316 |
+
dim=2,
|
1317 |
+
)
|
1318 |
+
|
1319 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1320 |
+
|
1321 |
+
# voila head output
|
1322 |
+
voila_head_pred = outputs.voila_pred[:, -1, :]
|
1323 |
+
voila_head_pred = torch.argmax(voila_head_pred, dim=-1)
|
1324 |
+
voila_head_pred = voila_head_pred.cpu()[0].item()
|
1325 |
+
|
1326 |
+
# pre-process distribution
|
1327 |
+
# Apply temperature and top-k
|
1328 |
+
if temperature > 0:
|
1329 |
+
next_token_logits = next_token_logits / temperature
|
1330 |
+
if top_k > 0:
|
1331 |
+
top_k = min(top_k, next_token_logits.size(-1)) # Safety check
|
1332 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
1333 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
1334 |
+
next_token_logits = next_token_logits.masked_fill(indices_to_remove, -float("Inf"))
|
1335 |
+
|
1336 |
+
# sample
|
1337 |
+
probs = nn.functional.softmax(next_token_logits, dim=-1)
|
1338 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1339 |
+
|
1340 |
+
# voila head pred == 1, use assistant token
|
1341 |
+
if voila_head_pred == 1 and not speaking:
|
1342 |
+
next_tokens[0] = llm_assistant_token_id
|
1343 |
+
speaking = True
|
1344 |
+
elif next_tokens[0] == eos_token_id:
|
1345 |
+
speaking = False
|
1346 |
+
|
1347 |
+
# finished sentences should have their next token be a padding token
|
1348 |
+
if eos_token_id is not None:
|
1349 |
+
if pad_token_id is None:
|
1350 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
1351 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
1352 |
+
|
1353 |
+
# Append NUM_CODEBOOK text tokens or audio_tokens
|
1354 |
+
if len(next_tokens.shape) == 1:
|
1355 |
+
next_tokens = next_tokens[:, None, None].expand(-1, 1, self.config.num_codebooks)
|
1356 |
+
audio_token_mask = next_tokens == llm_audio_token_id
|
1357 |
+
next_tokens = next_tokens * torch.logical_not(audio_token_mask) + audio_tokens * audio_token_mask
|
1358 |
+
|
1359 |
+
if audio_token_mask[0, 0, 0].item():
|
1360 |
+
try:
|
1361 |
+
new_input_tokens = next(input_generator)
|
1362 |
+
except:
|
1363 |
+
this_peer_finished = True
|
1364 |
+
break
|
1365 |
+
new_input_tokens = new_input_tokens[None,None,:]
|
1366 |
+
else:
|
1367 |
+
new_input_tokens = next_tokens
|
1368 |
+
new_input_tokens = torch.cat([new_input_tokens, next_tokens], dim=2)
|
1369 |
+
|
1370 |
+
input_ids = torch.cat([input_ids, new_input_tokens], dim=1)
|
1371 |
+
if streamer is not None:
|
1372 |
+
streamer.put(next_tokens.cpu())
|
1373 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1374 |
+
outputs, model_kwargs
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
# # if eos_token was found in one sentence, set sentence to finished
|
1378 |
+
# if eos_token_id_tensor is not None:
|
1379 |
+
# unfinished_sequences = unfinished_sequences.mul(
|
1380 |
+
# next_tokens[:, :, 0].ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=1)
|
1381 |
+
# )
|
1382 |
+
|
1383 |
+
# # stop when each sentence is finished
|
1384 |
+
# if unfinished_sequences.max() == 0:
|
1385 |
+
# this_peer_finished = True
|
1386 |
+
|
1387 |
+
# stop if we exceed the maximum length
|
1388 |
+
if input_ids.shape[1] >= max_length:
|
1389 |
+
this_peer_finished = True
|
1390 |
+
|
1391 |
+
if this_peer_finished:
|
1392 |
+
break
|
1393 |
+
|
1394 |
+
if streamer is not None:
|
1395 |
+
streamer.end()
|
1396 |
+
|
1397 |
+
return input_ids
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchaudio
|
4 |
+
transformers
|
5 |
+
soundfile
|
6 |
+
librosa
|
7 |
+
jsonlines
|
8 |
+
gradio
|
9 |
+
pyannote.audio
|
spkr.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from torchaudio.functional import resample
|
4 |
+
|
5 |
+
from pyannote.audio import Model
|
6 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
7 |
+
|
8 |
+
|
9 |
+
class SpeakerEmbedding:
|
10 |
+
def __init__(self, model_path="pyannote/wespeaker-voxceleb-resnet34-LM", device="cuda"):
|
11 |
+
model = Model.from_pretrained(model_path).eval()
|
12 |
+
|
13 |
+
self.device = torch.device(device)
|
14 |
+
self.sample_rate = 16000
|
15 |
+
self.model = model.to(self.device)
|
16 |
+
|
17 |
+
@torch.no_grad()
|
18 |
+
def __call__(self, wav, sr):
|
19 |
+
wav = torch.tensor(wav, device=self.device)
|
20 |
+
if sr != self.sample_rate:
|
21 |
+
wav = resample(wav, sr, self.sample_rate)
|
22 |
+
sr = self.sample_rate
|
23 |
+
|
24 |
+
assert len(wav.shape) <= 3
|
25 |
+
is_batch = False
|
26 |
+
if len(wav.shape) == 3:
|
27 |
+
is_batch = True
|
28 |
+
elif len(wav.shape) == 2:
|
29 |
+
wav = wav[None, :, :]
|
30 |
+
else:
|
31 |
+
wav = wav[None, None, :]
|
32 |
+
|
33 |
+
with torch.inference_mode():
|
34 |
+
embeddings = self.model(wav)
|
35 |
+
|
36 |
+
if is_batch:
|
37 |
+
return embeddings
|
38 |
+
else:
|
39 |
+
return embeddings[0]
|
40 |
+
|
41 |
+
if __name__ == '__main__':
|
42 |
+
import argparse
|
43 |
+
parser = argparse.ArgumentParser()
|
44 |
+
parser.add_argument("--wav", type=str, required=True)
|
45 |
+
args = parser.parse_args()
|
46 |
+
|
47 |
+
model = SpeakerEmbedding(device="cuda")
|
48 |
+
|
49 |
+
wav, sr = torchaudio.load(args.wav)
|
50 |
+
print(model(wav, sr))
|
tokenize_func.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import copy
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
AUDIO_TOKEN_FORMAT = "<|{}|>"
|
8 |
+
|
9 |
+
DEFAULT_SYSTEM_START_TOKEN = "<SYSTEM>"
|
10 |
+
DEFAULT_SYSTEM_END_TOKEN = "</SYSTEM>"
|
11 |
+
|
12 |
+
DEFAULT_TTS_REF_START_TOKEN = "<au_tts_ref_start>"
|
13 |
+
DEFAULT_TTS_REF_END_TOKEN = "<au_tts_ref_end>"
|
14 |
+
DEFAULT_TTS_REF_TOKEN = "<au_tts_ref>"
|
15 |
+
|
16 |
+
DEFAULT_CHAT_REF_START_TOKEN = "<au_chat_ref_start>"
|
17 |
+
DEFAULT_CHAT_REF_END_TOKEN = "<au_chat_ref_end>"
|
18 |
+
DEFAULT_CHAT_REF_TOKEN = "<au_chat_ref>"
|
19 |
+
|
20 |
+
DEFAULT_HUMAN_TOKEN = "<|HUMAN|>"
|
21 |
+
DEFAULT_ASSISTANT_TOKEN = "<|VOILA|>"
|
22 |
+
|
23 |
+
DEFAULT_AUDIO_TOKEN = "<au_token>"
|
24 |
+
|
25 |
+
# ===================================
|
26 |
+
# task special token
|
27 |
+
# -----------------------------------
|
28 |
+
TASK_ASR_TOKEN = "<asr>"
|
29 |
+
TASK_TTS_TOKEN = "<tts>"
|
30 |
+
TASK_CHAT_TOKEN = "<chat>"
|
31 |
+
TASK_STREAM_CHAT_TOKEN = "<stream_chat>"
|
32 |
+
|
33 |
+
TASK_ASR_TEXT_OUTPUT = "<asr_text_output>"
|
34 |
+
TASK_TTS_AUDIO_OUTPUT = "<tts_audio_output>"
|
35 |
+
TASK_CHAT_TEXT_OUTPUT = "<chat_text_output>"
|
36 |
+
TASK_CHAT_AUDIO_OUTPUT = "<chat_audio_output>"
|
37 |
+
|
38 |
+
CHAT_AUDIO_TEXT_SPLIT_TOKEN = "<chat_audio_text_split>"
|
39 |
+
# ===================================
|
40 |
+
|
41 |
+
PREPEND_LEN = 80
|
42 |
+
SEG_LEN = 640
|
43 |
+
AUDIO_SR = 16000
|
44 |
+
|
45 |
+
TASK_TYPE_CONF = {
|
46 |
+
"chat_asr": TASK_ASR_TOKEN + TASK_ASR_TEXT_OUTPUT,
|
47 |
+
"chat_tts": TASK_TTS_TOKEN + TASK_TTS_AUDIO_OUTPUT,
|
48 |
+
"chat_tito": TASK_CHAT_TOKEN + TASK_CHAT_TEXT_OUTPUT,
|
49 |
+
"chat_tiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
|
50 |
+
"chat_aiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
|
51 |
+
"chat_atiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
|
52 |
+
"chat_aiao_auto": TASK_STREAM_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def _get_zero_audio_pad(token_num):
|
57 |
+
return np.zeros(SEG_LEN*token_num)
|
58 |
+
|
59 |
+
def _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size):
|
60 |
+
ret_audio_tokens = []
|
61 |
+
for n in range(num_codebooks):
|
62 |
+
audio_token = audio_tokens[n]
|
63 |
+
ret_audio_tokens.append(''.join([AUDIO_TOKEN_FORMAT.format(au + n*codebook_size) if isinstance(au, int) else au for au in audio_token]))
|
64 |
+
return ret_audio_tokens
|
65 |
+
|
66 |
+
def _wrapper_audio_tokens_autonomous(audio_tokens, num_codebooks, codebook_size, audio_token_min_id):
|
67 |
+
ret_audio_tokens = []
|
68 |
+
for n in range(num_codebooks):
|
69 |
+
audio_token = audio_tokens[n]
|
70 |
+
ret_audio_tokens.append([(au + n*codebook_size + audio_token_min_id) for au in audio_token])
|
71 |
+
return ret_audio_tokens
|
72 |
+
|
73 |
+
# Item format
|
74 |
+
# {
|
75 |
+
# "instruction": "",
|
76 |
+
# "conversations": [
|
77 |
+
# {
|
78 |
+
# "from": "user" or "assistant",
|
79 |
+
# "text": "",
|
80 |
+
# "audio": {
|
81 |
+
# "array": [],
|
82 |
+
# "sr": 16000,
|
83 |
+
# "bytes": "",
|
84 |
+
# "file": "",
|
85 |
+
# },
|
86 |
+
# }
|
87 |
+
# ],
|
88 |
+
# }
|
89 |
+
def _token_input_format(item, tokenizer, tokenizer_voila, dataset_cfg):
|
90 |
+
task_type = dataset_cfg["task_type"]
|
91 |
+
num_codebooks = dataset_cfg["num_codebooks"]
|
92 |
+
codebook_size = dataset_cfg["codebook_size"]
|
93 |
+
|
94 |
+
task_token = TASK_TYPE_CONF[task_type]
|
95 |
+
|
96 |
+
# Construct system message
|
97 |
+
system = item["instruction"]
|
98 |
+
if task_type in ["chat_aiao", "chat_atiao", "chat_tiao"]:
|
99 |
+
system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN + system
|
100 |
+
elif task_type == "chat_tts":
|
101 |
+
system = DEFAULT_TTS_REF_START_TOKEN + DEFAULT_TTS_REF_TOKEN + DEFAULT_TTS_REF_END_TOKEN + system
|
102 |
+
else:
|
103 |
+
print (f"task type {task_type} do not use ref.")
|
104 |
+
system = task_token + system
|
105 |
+
system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN
|
106 |
+
|
107 |
+
# Get ids for system
|
108 |
+
system_ids = tokenizer.encode(system, add_special_tokens=False)
|
109 |
+
|
110 |
+
# Copy into num_codebooks input ids
|
111 |
+
input_ids_list = []
|
112 |
+
for _ in range(num_codebooks):
|
113 |
+
input_ids_list.append(copy.deepcopy(system_ids))
|
114 |
+
|
115 |
+
# Assemble conversations
|
116 |
+
for i, turn in enumerate(item["conversations"]):
|
117 |
+
if turn['from'] == 'assistant':
|
118 |
+
# task with audio token as input, prepare audio token
|
119 |
+
if task_type in ["chat_aiao", "chat_tts"]:
|
120 |
+
if "audio" not in turn:
|
121 |
+
content = DEFAULT_ASSISTANT_TOKEN
|
122 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False)
|
123 |
+
for n in range(num_codebooks):
|
124 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
125 |
+
else:
|
126 |
+
# Load audio
|
127 |
+
if 'array' in turn['audio']:
|
128 |
+
assert "sr" in turn["audio"]
|
129 |
+
if len(turn["audio"]['array'].shape) > 1:
|
130 |
+
assert turn["audio"]['array'].shape[0] <= 2
|
131 |
+
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
|
132 |
+
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
|
133 |
+
elif "bytes" in turn['audio']:
|
134 |
+
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
|
135 |
+
elif "file" in turn['audio']:
|
136 |
+
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
|
137 |
+
else:
|
138 |
+
raise Exception(f"No audio input for task {task_type}")
|
139 |
+
|
140 |
+
# get audio token
|
141 |
+
audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
|
142 |
+
audio_tokens = audio_tokens.cpu().numpy().tolist()
|
143 |
+
audio_tokens = _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size)
|
144 |
+
|
145 |
+
for n in range(num_codebooks):
|
146 |
+
content = DEFAULT_ASSISTANT_TOKEN + audio_tokens[n] + tokenizer.eos_token
|
147 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
148 |
+
max_length=tokenizer.model_max_length)
|
149 |
+
input_ids_list[n] += content_ids
|
150 |
+
|
151 |
+
elif task_type in ["chat_tito", "chat_asr"]:
|
152 |
+
if "text" not in turn:
|
153 |
+
content = DEFAULT_ASSISTANT_TOKEN
|
154 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False)
|
155 |
+
for n in range(num_codebooks):
|
156 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
157 |
+
else:
|
158 |
+
text = turn['text'].strip()
|
159 |
+
content = DEFAULT_ASSISTANT_TOKEN + text + tokenizer.eos_token
|
160 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
161 |
+
max_length=tokenizer.model_max_length)
|
162 |
+
for n in range(num_codebooks):
|
163 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
164 |
+
else:
|
165 |
+
raise ValueError (f"[Error] Invalid data type of {task_type}.")
|
166 |
+
else:
|
167 |
+
# task with audio token as input, prepare audio token
|
168 |
+
if task_type in ["chat_aiao", "chat_asr"]:
|
169 |
+
# Load audio
|
170 |
+
assert "audio" in turn
|
171 |
+
if 'array' in turn['audio']:
|
172 |
+
assert "sr" in turn["audio"]
|
173 |
+
if len(turn["audio"]['array'].shape) > 1:
|
174 |
+
assert turn["audio"]['array'].shape[0] <= 2
|
175 |
+
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
|
176 |
+
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
|
177 |
+
elif "bytes" in turn['audio']:
|
178 |
+
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
|
179 |
+
elif "file" in turn['audio']:
|
180 |
+
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
|
181 |
+
else:
|
182 |
+
raise Exception(f"No audio input for task {task_type}")
|
183 |
+
|
184 |
+
# get audio token
|
185 |
+
audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
|
186 |
+
audio_tokens = audio_tokens.cpu().numpy().tolist()
|
187 |
+
audio_tokens = _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size)
|
188 |
+
|
189 |
+
for n in range(num_codebooks):
|
190 |
+
content = DEFAULT_HUMAN_TOKEN + audio_tokens[n]
|
191 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
192 |
+
max_length=tokenizer.model_max_length)
|
193 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
194 |
+
elif task_type in ["chat_tito", "chat_tts"]:
|
195 |
+
text = turn['text'].strip()
|
196 |
+
content = DEFAULT_HUMAN_TOKEN + text
|
197 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
198 |
+
max_length=tokenizer.model_max_length)
|
199 |
+
for n in range(num_codebooks):
|
200 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
201 |
+
else:
|
202 |
+
raise ValueError (f"[Error] Invalid data type of {task_type}.")
|
203 |
+
|
204 |
+
for n in range(num_codebooks):
|
205 |
+
input_ids_list[n] = input_ids_list[n][:tokenizer.model_max_length]
|
206 |
+
|
207 |
+
return input_ids_list, None, None, None
|
208 |
+
|
209 |
+
def _token_input_format_autonomous(item, tokenizer, tokenizer_voila, dataset_cfg):
|
210 |
+
task_type = dataset_cfg["task_type"]
|
211 |
+
num_codebooks = dataset_cfg["num_codebooks"]
|
212 |
+
codebook_size = dataset_cfg["codebook_size"]
|
213 |
+
assert task_type == "chat_aiao_auto", f"only support chat_aiao_auto, {task_type} is invalid"
|
214 |
+
|
215 |
+
DEFAULT_HUMAN_TOKEN_ID = tokenizer.convert_tokens_to_ids(DEFAULT_HUMAN_TOKEN)
|
216 |
+
assert isinstance(DEFAULT_HUMAN_TOKEN_ID, int), "DEFAULT_HUMAN_TOKEN_ID should be an integer"
|
217 |
+
AUDIO_MIN_TOKEN_ID = tokenizer.convert_tokens_to_ids(AUDIO_TOKEN_FORMAT.format(0))
|
218 |
+
assert isinstance(AUDIO_MIN_TOKEN_ID, int), "AUDIO_MIN_TOKEN_ID should be an integer"
|
219 |
+
|
220 |
+
task_token = TASK_TYPE_CONF[task_type]
|
221 |
+
|
222 |
+
# Construct system message
|
223 |
+
system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN
|
224 |
+
system = task_token + system
|
225 |
+
system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN
|
226 |
+
|
227 |
+
# Get ids for system
|
228 |
+
system_ids_list = [[], []]
|
229 |
+
system_ids = tokenizer.encode(system, add_special_tokens=False)
|
230 |
+
|
231 |
+
# Insert instruction tokens into system prompt tokens
|
232 |
+
instruction = item["instruction"]
|
233 |
+
if instruction != "":
|
234 |
+
instruction_ids = tokenizer.encode(instruction, add_special_tokens=False)
|
235 |
+
else:
|
236 |
+
instruction_ids = []
|
237 |
+
|
238 |
+
system_ids_list[0] = system_ids[:-1] + instruction_ids + system_ids[-1:]
|
239 |
+
system_ids_list[1] = system_ids[:-1] + instruction_ids + system_ids[-1:]
|
240 |
+
|
241 |
+
# Copy into num_codebooks input ids
|
242 |
+
channel1_input_ids_list = [[] for _ in range(num_codebooks)]
|
243 |
+
channel2_input_ids_list = [[] for _ in range(num_codebooks)]
|
244 |
+
for n in range(num_codebooks):
|
245 |
+
channel1_input_ids_list[n] += copy.deepcopy(system_ids_list[0]) + [DEFAULT_HUMAN_TOKEN_ID]
|
246 |
+
channel2_input_ids_list[n] += copy.deepcopy(system_ids_list[1]) + [DEFAULT_HUMAN_TOKEN_ID]
|
247 |
+
|
248 |
+
# prepare audio token to simulate streaming input
|
249 |
+
audio_meta = item['conversations'][0]['audio']
|
250 |
+
if 'array' in audio_meta:
|
251 |
+
assert "sr" in audio_meta
|
252 |
+
if len(audio_meta['array'].shape) > 1:
|
253 |
+
assert audio_meta['array'].shape[0] <= 2
|
254 |
+
audio_meta['array'] = librosa.to_mono(audio_meta['array'])
|
255 |
+
audio = librosa.resample(audio_meta['array'], orig_sr=audio_meta["sr"], target_sr=AUDIO_SR)
|
256 |
+
elif "bytes" in audio_meta:
|
257 |
+
audio, _ = librosa.load(io.BytesIO(audio_meta['bytes']), sr=AUDIO_SR)
|
258 |
+
elif "file" in audio_meta:
|
259 |
+
audio, _ = librosa.load(audio_meta['file'], sr=AUDIO_SR)
|
260 |
+
else:
|
261 |
+
raise Exception(f"No audio input for task {task_type}")
|
262 |
+
|
263 |
+
# get audio token
|
264 |
+
streaming_user_input_audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
|
265 |
+
streaming_user_input_audio_tokens = streaming_user_input_audio_tokens.cpu().numpy().tolist()
|
266 |
+
streaming_user_input_audio_tokens = _wrapper_audio_tokens_autonomous(streaming_user_input_audio_tokens, num_codebooks, codebook_size, AUDIO_MIN_TOKEN_ID)
|
267 |
+
|
268 |
+
return [channel1_input_ids_list, channel2_input_ids_list], None, None, streaming_user_input_audio_tokens
|
269 |
+
|
270 |
+
def _alpha_audio_input_format(item, tokenizer, dataset_cfg):
|
271 |
+
task_type = dataset_cfg["task_type"]
|
272 |
+
num_codebooks = dataset_cfg["num_codebooks"]
|
273 |
+
codebook_size = dataset_cfg["codebook_size"]
|
274 |
+
|
275 |
+
task_token = TASK_TYPE_CONF[task_type]
|
276 |
+
|
277 |
+
# Construct system message
|
278 |
+
system = item["instruction"]
|
279 |
+
if task_type in ["chat_aiao", "chat_atiao", "chat_tiao"]:
|
280 |
+
system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN + system
|
281 |
+
elif task_type == "chat_tts":
|
282 |
+
system = DEFAULT_TTS_REF_START_TOKEN + DEFAULT_TTS_REF_TOKEN + DEFAULT_TTS_REF_END_TOKEN + system
|
283 |
+
else:
|
284 |
+
print (f"task type {task_type} do not use ref.")
|
285 |
+
system = task_token + system
|
286 |
+
system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN
|
287 |
+
|
288 |
+
# Get ids for system
|
289 |
+
system_ids = tokenizer.encode(system, add_special_tokens=False)
|
290 |
+
|
291 |
+
# Copy into num_codebooks input ids
|
292 |
+
input_ids_list = []
|
293 |
+
for _ in range(num_codebooks):
|
294 |
+
input_ids_list.append(copy.deepcopy(system_ids))
|
295 |
+
|
296 |
+
# Construct audio data and mask
|
297 |
+
audio_data = [np.array([0]*PREPEND_LEN)]
|
298 |
+
audio_data.append(_get_zero_audio_pad(len(system_ids)))
|
299 |
+
audio_data_mask = [0] * len(system_ids)
|
300 |
+
|
301 |
+
# Assemble conversations
|
302 |
+
for i, turn in enumerate(item["conversations"]):
|
303 |
+
if turn['from'] == 'assistant':
|
304 |
+
# task with audio token as input, prepare audio token
|
305 |
+
if task_type in ["chat_aiao"]:
|
306 |
+
if "audio" not in turn:
|
307 |
+
content = DEFAULT_ASSISTANT_TOKEN
|
308 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False)
|
309 |
+
for n in range(num_codebooks):
|
310 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
311 |
+
# preprocess audio_data & audio_data_mask
|
312 |
+
audio_data.append(_get_zero_audio_pad(len(content_ids)))
|
313 |
+
audio_data_mask += [0] * len(content_ids)
|
314 |
+
else:
|
315 |
+
# Load audio
|
316 |
+
if 'array' in turn['audio']:
|
317 |
+
assert "sr" in turn["audio"]
|
318 |
+
if len(turn["audio"]['array'].shape) > 1:
|
319 |
+
assert turn["audio"]['array'].shape[0] <= 2
|
320 |
+
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
|
321 |
+
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
|
322 |
+
elif "bytes" in turn['audio']:
|
323 |
+
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
|
324 |
+
elif "file" in turn['audio']:
|
325 |
+
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
|
326 |
+
else:
|
327 |
+
raise Exception(f"No audio input for task {task_type}")
|
328 |
+
|
329 |
+
# get audio token
|
330 |
+
audio_token_num = int(len(audio) / SEG_LEN)
|
331 |
+
audio_token = [DEFAULT_AUDIO_TOKEN] * audio_token_num
|
332 |
+
audio_token = ''.join(audio_token)
|
333 |
+
audio = audio[:SEG_LEN*audio_token_num] # trim audio
|
334 |
+
|
335 |
+
content = DEFAULT_ASSISTANT_TOKEN + audio_token + tokenizer.eos_token
|
336 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
337 |
+
max_length=tokenizer.model_max_length)
|
338 |
+
for n in range(num_codebooks):
|
339 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
340 |
+
|
341 |
+
audio_data.append(_get_zero_audio_pad(1))
|
342 |
+
audio_data_mask += [0]
|
343 |
+
audio_data.append(audio)
|
344 |
+
audio_data_mask += [1] * audio_token_num
|
345 |
+
audio_data.append(_get_zero_audio_pad(1))
|
346 |
+
audio_data_mask += [0]
|
347 |
+
elif task_type in ["chat_tito"]:
|
348 |
+
if "text" not in turn:
|
349 |
+
content = DEFAULT_ASSISTANT_TOKEN
|
350 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False)
|
351 |
+
for n in range(num_codebooks):
|
352 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
353 |
+
# preprocess audio_data & audio_data_mask
|
354 |
+
audio_data.append(_get_zero_audio_pad(len(content_ids)))
|
355 |
+
audio_data_mask += [0] * len(content_ids)
|
356 |
+
else:
|
357 |
+
text = turn['text'].strip()
|
358 |
+
content = DEFAULT_ASSISTANT_TOKEN + text + tokenizer.eos_token
|
359 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
360 |
+
max_length=tokenizer.model_max_length)
|
361 |
+
for n in range(num_codebooks):
|
362 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
363 |
+
audio_data.append(_get_zero_audio_pad(len(content_ids)))
|
364 |
+
audio_data_mask += [0] * len(content_ids)
|
365 |
+
else:
|
366 |
+
raise ValueError (f"[Error] Invalid data type of {task_type}.")
|
367 |
+
else:
|
368 |
+
# task with audio token as input, prepare audio token
|
369 |
+
if task_type in ["chat_aiao"]:
|
370 |
+
# Load audio
|
371 |
+
assert "audio" in turn
|
372 |
+
if 'array' in turn['audio']:
|
373 |
+
assert "sr" in turn["audio"]
|
374 |
+
if len(turn["audio"]['array'].shape) > 1:
|
375 |
+
assert turn["audio"]['array'].shape[0] <= 2
|
376 |
+
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
|
377 |
+
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
|
378 |
+
elif "bytes" in turn['audio']:
|
379 |
+
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
|
380 |
+
elif "file" in turn['audio']:
|
381 |
+
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
|
382 |
+
else:
|
383 |
+
raise Exception(f"No audio input for task {task_type}")
|
384 |
+
|
385 |
+
# get audio token
|
386 |
+
audio_token_num = int(len(audio) / SEG_LEN)
|
387 |
+
audio_token = [DEFAULT_AUDIO_TOKEN] * audio_token_num
|
388 |
+
audio_token = ''.join(audio_token)
|
389 |
+
audio = audio[:SEG_LEN*audio_token_num] # trim audio
|
390 |
+
|
391 |
+
content = DEFAULT_HUMAN_TOKEN + audio_token
|
392 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
393 |
+
max_length=tokenizer.model_max_length)
|
394 |
+
for n in range(num_codebooks):
|
395 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
396 |
+
|
397 |
+
audio_data.append(_get_zero_audio_pad(1))
|
398 |
+
audio_data_mask += [0]
|
399 |
+
audio_data.append(audio)
|
400 |
+
audio_data_mask += [1] * audio_token_num
|
401 |
+
elif task_type in ["chat_tito"]:
|
402 |
+
text = turn['text'].strip()
|
403 |
+
content = DEFAULT_HUMAN_TOKEN + text
|
404 |
+
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
|
405 |
+
max_length=tokenizer.model_max_length)
|
406 |
+
for n in range(num_codebooks):
|
407 |
+
input_ids_list[n] += copy.deepcopy(content_ids)
|
408 |
+
audio_data.append(_get_zero_audio_pad(len(content_ids)))
|
409 |
+
audio_data_mask += [0] * len(content_ids)
|
410 |
+
else:
|
411 |
+
raise ValueError (f"[Error] Invalid data type of {task_type}.")
|
412 |
+
|
413 |
+
for n in range(num_codebooks):
|
414 |
+
input_ids_list[n] = input_ids_list[n][:tokenizer.model_max_length]
|
415 |
+
audio_data_mask = audio_data_mask[:tokenizer.model_max_length]
|
416 |
+
audio_data = np.concatenate(audio_data)
|
417 |
+
audio_data = audio_data[:PREPEND_LEN + tokenizer.model_max_length*SEG_LEN]
|
418 |
+
|
419 |
+
return input_ids_list, audio_data, audio_data_mask, None
|
420 |
+
|
421 |
+
# Item format
|
422 |
+
# {
|
423 |
+
# "instruction": "",
|
424 |
+
# "conversations": [
|
425 |
+
# {
|
426 |
+
# "from": "user" or "assistant",
|
427 |
+
# "text": "",
|
428 |
+
# "audio": {
|
429 |
+
# "array": [],
|
430 |
+
# "sr": 16000,
|
431 |
+
# "bytes": "",
|
432 |
+
# "file": "",
|
433 |
+
# },
|
434 |
+
# }
|
435 |
+
# ],
|
436 |
+
# }
|
437 |
+
def voila_input_format(item, tokenizer, tokenizer_voila, dataset_cfg):
|
438 |
+
if dataset_cfg["input_type"] == "audio":
|
439 |
+
return _alpha_audio_input_format(item, tokenizer, dataset_cfg)
|
440 |
+
elif dataset_cfg["input_type"] == "autonomous":
|
441 |
+
return _token_input_format_autonomous(item, tokenizer, tokenizer_voila, dataset_cfg)
|
442 |
+
else:
|
443 |
+
return _token_input_format(item, tokenizer, tokenizer_voila, dataset_cfg)
|
voila_tokenizer.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from torchaudio.functional import resample
|
4 |
+
|
5 |
+
from transformers import AutoProcessor, EncodecModel
|
6 |
+
|
7 |
+
|
8 |
+
ALL_BANDWIDTHS = [1.1]
|
9 |
+
|
10 |
+
class VoilaTokenizer:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
model_path="maitrix-org/Voila-Tokenizer",
|
14 |
+
bandwidth_id=0,
|
15 |
+
device="cpu",
|
16 |
+
):
|
17 |
+
self.device = torch.device(device)
|
18 |
+
self.bandwidth = ALL_BANDWIDTHS[bandwidth_id]
|
19 |
+
self.bandwidth_id = torch.tensor([bandwidth_id], device=device)
|
20 |
+
|
21 |
+
self.processor = AutoProcessor.from_pretrained(model_path)
|
22 |
+
self.model = EncodecModel.from_pretrained(model_path).to(device)
|
23 |
+
|
24 |
+
self.sampling_rate = self.processor.sampling_rate
|
25 |
+
self.model_version = self.model.config.model_version
|
26 |
+
|
27 |
+
|
28 |
+
@torch.no_grad()
|
29 |
+
def encode(self, wav, sr):
|
30 |
+
wav = torch.tensor(wav, dtype=torch.float32, device=self.device)
|
31 |
+
if sr != self.processor.sampling_rate:
|
32 |
+
wav = resample(wav, sr, self.processor.sampling_rate)
|
33 |
+
sr = self.processor.sampling_rate
|
34 |
+
if len(wav.shape) == 1:
|
35 |
+
wav = wav[None, None, :]
|
36 |
+
elif len(wav.shape) == 2:
|
37 |
+
assert wav.shape[0] == 1
|
38 |
+
wav = wav[None, :]
|
39 |
+
elif len(wav.shape) == 3:
|
40 |
+
assert wav.shape[0] == 1 and wav.shape[1] == 1
|
41 |
+
|
42 |
+
# inputs = self.processor(raw_audio=wav, sampling_rate=sr, return_tensors="pt")
|
43 |
+
encoder_outputs = self.model.encode(wav, bandwidth=self.bandwidth)
|
44 |
+
return encoder_outputs.audio_codes[0, 0]
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def decode(self, audio_codes):
|
48 |
+
assert len(audio_codes.shape) == 2
|
49 |
+
audio_values = self.model.decode(audio_codes[None, None, :, :], [None])[0]
|
50 |
+
return audio_values[0, 0]
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
import argparse
|
54 |
+
import soundfile as sf
|
55 |
+
|
56 |
+
parser = argparse.ArgumentParser()
|
57 |
+
parser.add_argument("--wav", type=str)
|
58 |
+
args = parser.parse_args()
|
59 |
+
|
60 |
+
wav, sr = torchaudio.load(args.wav)
|
61 |
+
if len(wav.shape) > 1:
|
62 |
+
wav = wav[0]
|
63 |
+
|
64 |
+
model = VoilaTokenizer(device="cuda")
|
65 |
+
|
66 |
+
audio_codes = model.encode(wav, sr)
|
67 |
+
audio_values = model.decode(audio_codes).cpu().numpy()
|
68 |
+
|
69 |
+
tps = audio_codes.shape[-1] / (audio_values.shape[-1] / model.processor.sampling_rate)
|
70 |
+
print(audio_codes.shape, audio_values.shape, tps)
|
71 |
+
sf.write("audio_mt.wav", audio_values, model.processor.sampling_rate)
|