import math from typing import Optional from dataclasses import dataclass import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from einops import rearrange @dataclass class LocalArgs: codebook_size: int = 2048 num_codebooks: int = 4 # Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L105 class KVCache(nn.Module): def __init__( self, n_layer, batch_size, max_seq_len, n_heads, head_dim, dtype, device ): super().__init__() cache_shape = (n_layer, batch_size, n_heads, max_seq_len, head_dim) self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype, device=device)) self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype, device=device)) def update(self, layer_idx, input_pos, k_val, v_val): # k_val: [B, H, S, D] k_out = self.k_cache v_out = self.v_cache k_out[layer_idx, :, :, input_pos:input_pos+1] = k_val v_out[layer_idx, :, :, input_pos:input_pos+1] = v_val return k_out[layer_idx], v_out[layer_idx] # Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L756 def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: freqs = 1.0 / ( base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) ) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) return cache # Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L767 def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: xshaped = x.float().reshape(*x.shape[:-1], -1, 2) freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x) # Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L742 class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x: Tensor) -> Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight # Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L731 class FeedForward(nn.Module): def __init__(self, config: LocalArgs) -> None: super().__init__() self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) def forward(self, x: Tensor) -> Tensor: return self.w2(F.silu(self.w1(x)) * self.w3(x)) # Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L615 class Attention(nn.Module): def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True): super().__init__() assert config.dim % config.n_head == 0 self.layer_idx = layer_idx total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim # key, query, value projections for all heads, but in a batch self.wqkv = nn.Linear( config.dim, total_head_dim, bias=config.attention_qkv_bias ) self.wo = nn.Linear(config.dim, config.dim, bias=False) self.dropout = config.dropout self.n_head = config.n_head self.head_dim = config.head_dim self.n_local_heads = config.n_local_heads self.dim = config.dim self.use_sdpa = use_sdpa self._register_load_state_dict_pre_hook(self.load_hook) def load_hook(self, state_dict, prefix, *args): if prefix + "wq.weight" in state_dict: wq = state_dict.pop(prefix + "wq.weight") wk = state_dict.pop(prefix + "wk.weight") wv = state_dict.pop(prefix + "wv.weight") state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) def forward( self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[int] = None, kv_cache: Optional[KVCache] = None, ) -> Tensor: bsz, seqlen, _ = x.shape kv_size = self.n_local_heads * self.head_dim q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) q = q.view(bsz, seqlen, self.n_head, self.head_dim) k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) q = apply_rotary_emb(q, freqs_cis) k = apply_rotary_emb(k, freqs_cis) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) if kv_cache is not None: k, v = kv_cache.update(self.layer_idx, input_pos, k, v) k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) if self.use_sdpa: if mask is None: with sdpa_kernel(SDPBackend.FLASH_ATTENTION): y = F.scaled_dot_product_attention( q, k, v, dropout_p=self.dropout if self.training else 0.0, is_causal=True, # No third party attn_mask here to use flash_attention ) else: y = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, ) else: y = self.eq_scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, ) y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) return self.wo(y) def eq_scaled_dot_product_attention( self, query, key, value, attn_mask=None, dropout_p=0.0, ) -> torch.Tensor: # This is a standard scaled dot product attention # It's low efficient, but it doesn't raise cuda error L, S = query.size(-2), key.size(-2) scale_factor = 1 / math.sqrt(query.size(-1)) attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias attn_weight = torch.softmax(attn_weight, dim=-1) attn_weight = torch.dropout(attn_weight, dropout_p, train=True) return attn_weight @ value # Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L599 class TransformerBlock(nn.Module): def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True) -> None: super().__init__() self.attention = Attention(config, layer_idx, use_sdpa=use_sdpa) self.feed_forward = FeedForward(config) self.ffn_norm = RMSNorm(config.dim, config.norm_eps) self.attention_norm = RMSNorm(config.dim, config.norm_eps) def forward( self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: int = None, kv_cache: KVCache = None ) -> Tensor: h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, kv_cache) out = h + self.feed_forward(self.ffn_norm(h)) return out # Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L470 class AudioTransformer(nn.Module): def __init__(self, config, use_sdpa: bool = False): super().__init__() self.config = LocalArgs() self.config.codebook_size = config.codebook_size self.config.num_codebooks = config.num_codebooks if hasattr(config, "min_audio_token_id"): self.config.min_audio_token_id = config.min_audio_token_id self.config.max_audio_token_id = config.max_audio_token_id self.config.n_layer = 4 self.config.dim = 1024 self.config.n_head = 32 self.config.n_local_heads = 32 self.config.intermediate_size = 2816 self.config.head_dim = self.config.dim // self.config.n_head self.config.norm_eps = 1e-5 self.config.attention_qkv_bias = False self.config.dropout = 0.0 self.embeddings = nn.Embedding(self.config.codebook_size, self.config.dim) if self.config.dim != config.hidden_size: self.input_proj = nn.Linear(config.hidden_size, self.config.dim, bias=False) else: self.input_proj = nn.Identity() self.layers = nn.ModuleList( TransformerBlock(self.config, layer_idx, use_sdpa=use_sdpa) for layer_idx in range(self.config.n_layer) ) self.norm = RMSNorm(self.config.dim, eps=self.config.norm_eps) self.token_head = nn.Linear(self.config.dim, self.config.codebook_size, bias=False) self.gradient_checkpointing = False self.register_buffer( "freqs_cis", precompute_freqs_cis(self.config.num_codebooks, self.config.dim // self.config.n_head, 10000), persistent=False, ) self.register_buffer( "attention_mask", torch.tril(torch.ones(self.config.num_codebooks, self.config.num_codebooks, dtype=torch.bool)), persistent=False, ) def run_model(self, hidden_states, freqs_cis, attention_mask, input_pos: int = None, kv_cache: KVCache = None): for layer in self.layers: # TODO: gradient_checkpointing is disabled because of bug if False: # self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer.__call__, hidden_states, freqs_cis, attention_mask, use_reentrant=True, ) else: hidden_states = layer(hidden_states, freqs_cis, attention_mask, input_pos, kv_cache) hidden_states = self.norm(hidden_states) logits = self.token_head(hidden_states) return logits.float() # inp: [bs, hidden_size] # labels: [bs, num_codebooks] # logits: [bs, num_codebooks, codebook_size] def forward(self, inp, labels): bs = inp.shape[0] hidden_states = self.input_proj(inp) if self.freqs_cis.dtype != hidden_states.dtype: self.freqs_cis = self.freqs_cis.to(dtype=hidden_states.dtype) if labels is not None: # Training mode # Get embedding assert bs == labels.shape[0] and labels.shape[1] == self.config.num_codebooks, f"Labels shape error: {labels.shape}" hidden_states = [hidden_states[:, None, :], self.embeddings(labels[..., :-1]).to(hidden_states.dtype)] hidden_states = torch.cat(hidden_states, dim=1) # [bs, num_codebooks, hidden_size] # Run attention layers logits = self.run_model(hidden_states, self.freqs_cis, self.attention_mask) else: # Inference mode raise RuntimeError(f"Please call function \"inference\" in inference mode") return logits # inp: [bs, seq_len, hidden_size] # out_tokens: [bs, 1, num_codebooks] @torch.inference_mode() def inference(self, inp, temperature=0, top_k=0): # Only use the last hidden states for token computation inp = inp[:, -1:, :] bs = inp.shape[0] if self.freqs_cis.dtype != inp.dtype: self.freqs_cis = self.freqs_cis.to(dtype=inp.dtype) inp = self.input_proj(inp) # Inference mode kv_cache = KVCache( self.config.n_layer, bs, self.config.num_codebooks, self.config.n_head, self.config.head_dim, dtype=inp.dtype, device=inp.device, ) # Generate one token per step out_tokens = [] for input_pos in range(self.config.num_codebooks): inp = inp.reshape(bs, 1, self.config.dim) local_freqs_cis = self.freqs_cis[input_pos] local_mask = self.attention_mask[None, None, input_pos, :self.config.num_codebooks] logits = self.run_model(inp, local_freqs_cis, local_mask, input_pos, kv_cache) logits = logits.squeeze(dim=1) # Apply temperature and top-k if temperature > 0: logits = logits / temperature if top_k > 0: top_k = min(top_k, logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits = logits.masked_fill(indices_to_remove, -float("Inf")) # Do sample probs = nn.functional.softmax(logits, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1) next_tokens = next_tokens.reshape(bs, 1, 1) inp = self.embeddings(next_tokens) out_tokens.append(next_tokens) return torch.cat(out_tokens, dim=-1)