File size: 1,527 Bytes
e2f65f6 8c679c2 e2f65f6 8c679c2 86fab4a 98333ca 8c679c2 a0b460e fbc6758 8c679c2 f80cfc8 8c679c2 f80cfc8 8c679c2 f80cfc8 8c679c2 f80cfc8 8c679c2 f80cfc8 1895fc7 8c679c2 f80cfc8 a0b460e 8c679c2 f80cfc8 8c679c2 f80cfc8 8c679c2 fbc6758 8c679c2 e2f65f6 a0b460e 8c679c2 e2f65f6 0a3e7f6 f80cfc8 8c679c2 e2f65f6 f80cfc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import transformers
import gradio as gr
import librosa
import torch
import spaces
import numpy as np
@spaces.GPU(duration=60)
def transcribe_and_respond(audio_file):
try:
pipe = transformers.pipeline(
model='sarvamai/shuka_v1',
trust_remote_code=True,
device=0,
torch_dtype=torch.bfloat16
)
# Load the audio file
audio, sr = librosa.load(audio_file, sr=16000)
# Print audio properties for debugging
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
turns = [
{'role': 'system', 'content': 'Repeat the following text exactly, without any changes'},
{'role': 'user', 'content': '<|audio|>'}
]
# Debug: Print the initial turns
print(f"Initial turns: {turns}")
# Call the model with the audio and prompt
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
# Debug: Print the final output from the model
print(f"Model output: {output}")
return output
except Exception as e:
return f"Error: {str(e)}"
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs="text",
title="Live Transcription and Response",
description="Speak into your microphone, and the model will respond naturally and informatively.",
live=True
)
if __name__ == "__main__":
iface.launch() |