Updated Gradio App
Browse files
app.py
CHANGED
@@ -1,76 +1,59 @@
|
|
1 |
-
import gradio as gr
|
2 |
import transformers
|
|
|
3 |
import librosa
|
4 |
import torch
|
|
|
5 |
import numpy as np
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
model="sarvamai/shuka_v1",
|
10 |
-
trust_remote_code=True,
|
11 |
-
device=0 if torch.cuda.is_available() else -1,
|
12 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else None
|
13 |
-
)
|
14 |
-
|
15 |
-
def process_audio(audio):
|
16 |
-
"""
|
17 |
-
Processes the input audio and returns a text response generated by the Shuka model.
|
18 |
-
"""
|
19 |
-
if audio is None:
|
20 |
-
return "No audio provided. Please upload or record an audio file."
|
21 |
-
|
22 |
-
try:
|
23 |
-
# Gradio returns a tuple: (sample_rate, audio_data)
|
24 |
-
sample_rate, audio_data = audio
|
25 |
-
except Exception as e:
|
26 |
-
return f"Error processing audio input: {e}"
|
27 |
-
|
28 |
-
if audio_data is None or len(audio_data) == 0:
|
29 |
-
return "Audio data is empty. Please try again with a valid audio file."
|
30 |
-
|
31 |
-
# Force conversion of audio data to a floating-point numpy array.
|
32 |
-
audio_data = np.array(audio_data, dtype=np.float32)
|
33 |
-
|
34 |
-
# If the audio data is multi-dimensional, squeeze it to 1D.
|
35 |
-
if audio_data.ndim > 1:
|
36 |
-
audio_data = np.squeeze(audio_data)
|
37 |
-
|
38 |
-
# Resample to 16000 Hz if necessary.
|
39 |
-
if sample_rate != 16000:
|
40 |
-
try:
|
41 |
-
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
42 |
-
sample_rate = 16000
|
43 |
-
except Exception as e:
|
44 |
-
return f"Error during resampling: {e}"
|
45 |
-
|
46 |
-
# Define conversation turns for the model.
|
47 |
-
turns = [
|
48 |
-
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
49 |
-
{'role': 'user', 'content': '<|audio|>'}
|
50 |
-
]
|
51 |
-
|
52 |
try:
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
-
return f"Error
|
56 |
-
|
57 |
-
# Extract the generated text response.
|
58 |
-
if isinstance(result, list) and len(result) > 0:
|
59 |
-
response = result[0].get('generated_text', '')
|
60 |
-
else:
|
61 |
-
response = str(result)
|
62 |
-
|
63 |
-
return response
|
64 |
|
65 |
-
# Create the Gradio interface.
|
66 |
iface = gr.Interface(
|
67 |
-
fn=
|
68 |
-
inputs=gr.Audio(type="
|
69 |
outputs="text",
|
70 |
-
title="
|
71 |
-
description="
|
|
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
-
|
76 |
-
iface.launch(share=True)
|
|
|
|
|
1 |
import transformers
|
2 |
+
import gradio as gr
|
3 |
import librosa
|
4 |
import torch
|
5 |
+
import spaces
|
6 |
import numpy as np
|
7 |
|
8 |
+
@spaces.GPU(duration=60)
|
9 |
+
def transcribe_and_respond(audio_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
+
pipe = transformers.pipeline(
|
12 |
+
model='sarvamai/shuka_v1',
|
13 |
+
trust_remote_code=True,
|
14 |
+
device=0,
|
15 |
+
torch_dtype=torch.bfloat16
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the audio file at 16kHz
|
19 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
20 |
+
|
21 |
+
# Ensure audio is a floating-point numpy array
|
22 |
+
audio = np.array(audio, dtype=np.float32)
|
23 |
+
# If audio has more than one channel, convert to mono by averaging
|
24 |
+
if audio.ndim > 1:
|
25 |
+
audio = np.mean(audio, axis=-1)
|
26 |
+
|
27 |
+
# Debug: Print audio properties
|
28 |
+
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
|
29 |
+
|
30 |
+
turns = [
|
31 |
+
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
32 |
+
{'role': 'user', 'content': '<|audio|>'}
|
33 |
+
]
|
34 |
+
|
35 |
+
# Debug: Print initial turns
|
36 |
+
print(f"Initial turns: {turns}")
|
37 |
+
|
38 |
+
# Call the model with the audio and prompt
|
39 |
+
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
40 |
+
|
41 |
+
# Debug: Print the final output from the model
|
42 |
+
print(f"Model output: {output}")
|
43 |
+
|
44 |
+
return output
|
45 |
+
|
46 |
except Exception as e:
|
47 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
49 |
iface = gr.Interface(
|
50 |
+
fn=transcribe_and_respond,
|
51 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
52 |
outputs="text",
|
53 |
+
title="Live Transcription and Response",
|
54 |
+
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
55 |
+
live=True
|
56 |
)
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
+
iface.launch()
|
|