Updated Gradio App
Browse files
app.py
CHANGED
@@ -1,7 +1,55 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
import librosa
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load the Shuka model pipeline.
|
7 |
+
pipe = transformers.pipeline(
|
8 |
+
model="sarvamai/shuka_v1",
|
9 |
+
trust_remote_code=True,
|
10 |
+
device=0 if torch.cuda.is_available() else -1,
|
11 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else None
|
12 |
+
)
|
13 |
|
14 |
+
def process_audio(audio):
|
15 |
+
"""
|
16 |
+
Processes the input audio and returns a text response generated by the Shuka model.
|
17 |
+
"""
|
18 |
+
if audio is None:
|
19 |
+
return "No audio provided."
|
20 |
+
|
21 |
+
# Gradio returns a tuple (sample_rate, numpy_array)
|
22 |
+
sample_rate, audio_data = audio
|
23 |
+
|
24 |
+
# Resample to 16000 Hz if necessary
|
25 |
+
if sample_rate != 16000:
|
26 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
27 |
+
sample_rate = 16000
|
28 |
+
|
29 |
+
# Define conversation turns with a system prompt and a user prompt that signals audio input
|
30 |
+
turns = [
|
31 |
+
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
32 |
+
{'role': 'user', 'content': '<|audio|>'}
|
33 |
+
]
|
34 |
+
|
35 |
+
# Run the pipeline with the audio input and conversation context
|
36 |
+
result = pipe({'audio': audio_data, 'turns': turns, 'sampling_rate': sample_rate}, max_new_tokens=512)
|
37 |
+
|
38 |
+
# Extract the generated text response
|
39 |
+
if isinstance(result, list) and len(result) > 0:
|
40 |
+
response = result[0].get('generated_text', '')
|
41 |
+
else:
|
42 |
+
response = str(result)
|
43 |
+
return response
|
44 |
+
|
45 |
+
# Create the Gradio interface without the 'source' parameter.
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=process_audio,
|
48 |
+
inputs=gr.Audio(type="numpy"),
|
49 |
+
outputs="text",
|
50 |
+
title="Sarvam AI Shuka Voice Demo",
|
51 |
+
description="Upload a voice note and get a response using Sarvam AI's Shuka model."
|
52 |
+
)
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
iface.launch()
|