Updated Gradio App
Browse files
app.py
CHANGED
@@ -16,40 +16,54 @@ def process_audio(audio):
|
|
16 |
Processes the input audio and returns a text response generated by the Shuka model.
|
17 |
"""
|
18 |
if audio is None:
|
19 |
-
return "No audio provided."
|
20 |
-
|
21 |
-
# Gradio returns a tuple (sample_rate, numpy_array)
|
22 |
-
sample_rate, audio_data = audio
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Resample to 16000 Hz if necessary
|
25 |
if sample_rate != 16000:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
turns = [
|
31 |
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
32 |
{'role': 'user', 'content': '<|audio|>'}
|
33 |
]
|
34 |
-
|
35 |
-
# Run the pipeline with the audio input and conversation context
|
36 |
-
result = pipe({'audio': audio_data, 'turns': turns, 'sampling_rate': sample_rate}, max_new_tokens=512)
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
if isinstance(result, list) and len(result) > 0:
|
40 |
response = result[0].get('generated_text', '')
|
41 |
else:
|
42 |
response = str(result)
|
|
|
43 |
return response
|
44 |
|
45 |
-
# Create the Gradio interface
|
|
|
46 |
iface = gr.Interface(
|
47 |
fn=process_audio,
|
48 |
-
inputs=gr.Audio(type="numpy"),
|
49 |
outputs="text",
|
50 |
title="Sarvam AI Shuka Voice Demo",
|
51 |
-
description="Upload
|
52 |
)
|
53 |
|
54 |
if __name__ == "__main__":
|
55 |
-
|
|
|
|
16 |
Processes the input audio and returns a text response generated by the Shuka model.
|
17 |
"""
|
18 |
if audio is None:
|
19 |
+
return "No audio provided. Please upload or record an audio file."
|
|
|
|
|
|
|
20 |
|
21 |
+
try:
|
22 |
+
# Gradio returns a tuple: (sample_rate, numpy_array)
|
23 |
+
sample_rate, audio_data = audio
|
24 |
+
except Exception as e:
|
25 |
+
return f"Error processing audio input: {e}"
|
26 |
+
|
27 |
+
if audio_data is None or len(audio_data) == 0:
|
28 |
+
return "Audio data is empty. Please try again with a valid audio file."
|
29 |
+
|
30 |
# Resample to 16000 Hz if necessary
|
31 |
if sample_rate != 16000:
|
32 |
+
try:
|
33 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
34 |
+
sample_rate = 16000
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error during resampling: {e}"
|
37 |
+
|
38 |
+
# Define conversation turns for the model
|
39 |
turns = [
|
40 |
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
41 |
{'role': 'user', 'content': '<|audio|>'}
|
42 |
]
|
|
|
|
|
|
|
43 |
|
44 |
+
try:
|
45 |
+
result = pipe({'audio': audio_data, 'turns': turns, 'sampling_rate': sample_rate}, max_new_tokens=512)
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error during model processing: {e}"
|
48 |
+
|
49 |
+
# Extract generated text
|
50 |
if isinstance(result, list) and len(result) > 0:
|
51 |
response = result[0].get('generated_text', '')
|
52 |
else:
|
53 |
response = str(result)
|
54 |
+
|
55 |
return response
|
56 |
|
57 |
+
# Create the Gradio interface.
|
58 |
+
# If you wish to record audio directly, you may need to upgrade Gradio to a version that supports "source" for the Audio component.
|
59 |
iface = gr.Interface(
|
60 |
fn=process_audio,
|
61 |
+
inputs=gr.Audio(type="numpy"), # using file upload input for audio
|
62 |
outputs="text",
|
63 |
title="Sarvam AI Shuka Voice Demo",
|
64 |
+
description="Upload an audio file and get a response using Sarvam AI's Shuka model."
|
65 |
)
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
+
# If port 7860 is in use, you can specify another port (here we use 7861)
|
69 |
+
iface.launch(server_port=7861)
|