Spaces:
Sleeping
Sleeping
File size: 7,322 Bytes
5be7da8 973f2b8 5be7da8 973f2b8 fc09205 973f2b8 fc09205 973f2b8 fc09205 973f2b8 fc09205 5be7da8 973f2b8 8dbdb70 973f2b8 8dbdb70 5be7da8 8dbdb70 5be7da8 973f2b8 5be7da8 8dbdb70 5be7da8 8dbdb70 973f2b8 8dbdb70 5be7da8 973f2b8 8dbdb70 973f2b8 8dbdb70 973f2b8 8dbdb70 973f2b8 8dbdb70 973f2b8 8dbdb70 973f2b8 8dbdb70 fc09205 973f2b8 8dbdb70 973f2b8 8dbdb70 973f2b8 5be7da8 8dbdb70 5be7da8 8dbdb70 fc09205 5be7da8 973f2b8 5be7da8 973f2b8 8dbdb70 973f2b8 8dbdb70 5be7da8 973f2b8 8dbdb70 5be7da8 973f2b8 5be7da8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
# List of companies with their symbols
COMPANIES = {
'Apple (AAPL)': 'AAPL',
'Microsoft (MSFT)': 'MSFT',
'Amazon (AMZN)': 'AMZN',
'Google (GOOGL)': 'GOOGL',
'Meta (META)': 'META',
'Tesla (TSLA)': 'TSLA',
'NVIDIA (NVDA)': 'NVDA',
'JPMorgan Chase (JPM)': 'JPM',
'Johnson & Johnson (JNJ)': 'JNJ',
'Walmart (WMT)': 'WMT',
'Visa (V)': 'V',
'Mastercard (MA)': 'MA',
'Procter & Gamble (PG)': 'PG',
'UnitedHealth (UNH)': 'UNH',
'Home Depot (HD)': 'HD',
'Bank of America (BAC)': 'BAC',
'Coca-Cola (KO)': 'KO',
'Pfizer (PFE)': 'PFE',
'Disney (DIS)': 'DIS',
'Netflix (NFLX)': 'NFLX'
}
def calculate_metrics(df):
"""Calculate technical indicators"""
data = df.copy()
# Basic metrics
data['Returns'] = data['Close'].pct_change()
data['SMA_20'] = data['Close'].rolling(window=20).mean()
data['SMA_50'] = data['Close'].rolling(window=50).mean()
# RSI
delta = data['Close'].diff()
gain = delta.clip(lower=0)
loss = -delta.clip(upper=0)
avg_gain = gain.rolling(window=14).mean()
avg_loss = loss.rolling(window=14).mean()
rs = avg_gain / avg_loss
data['RSI'] = 100 - (100 / (1 + rs))
# Bollinger Bands
data['BB_middle'] = data['Close'].rolling(window=20).mean()
bb_std = data['Close'].rolling(window=20).std()
data['BB_upper'] = data['BB_middle'] + (2 * bb_std)
data['BB_lower'] = data['BB_middle'] - (2 * bb_std)
return data
def create_plots(data):
"""Create analysis plots"""
# Price and Volume Plot
fig1 = make_subplots(
rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.1,
subplot_titles=('Price and Moving Averages', 'Volume'),
row_heights=[0.7, 0.3]
)
fig1.add_trace(
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
row=1, col=1
)
fig1.add_trace(
go.Scatter(x=data.index, y=data['SMA_20'], name='SMA 20', line=dict(color='orange', dash='dash')),
row=1, col=1
)
fig1.add_trace(
go.Scatter(x=data.index, y=data['SMA_50'], name='SMA 50', line=dict(color='green', dash='dash')),
row=1, col=1
)
fig1.add_trace(
go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'),
row=2, col=1
)
fig1.update_layout(height=600, title_text="Price Analysis")
# Technical Analysis Plot
fig2 = make_subplots(
rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.1,
subplot_titles=('RSI', 'Bollinger Bands'),
row_heights=[0.5, 0.5]
)
# RSI
fig2.add_trace(
go.Scatter(x=data.index, y=data['RSI'], name='RSI', line=dict(color='purple')),
row=1, col=1
)
fig2.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
fig2.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
# Bollinger Bands
fig2.add_trace(
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
row=2, col=1
)
for band, color in [('BB_upper', 'gray'), ('BB_middle', 'red'), ('BB_lower', 'gray')]:
fig2.add_trace(
go.Scatter(x=data.index, y=data[band], name=band, line=dict(color=color, dash='dash')),
row=2, col=1
)
fig2.update_layout(height=600, title_text="Technical Analysis")
return [fig1, fig2]
def generate_summary(data, symbol):
"""Generate analysis summary"""
try:
current_price = float(data['Close'].iloc[-1])
prev_price = float(data['Close'].iloc[-2])
daily_return = ((current_price - prev_price) / prev_price) * 100
rsi = float(data['RSI'].iloc[-1])
sma_20 = float(data['SMA_20'].iloc[-1])
sma_50 = float(data['SMA_50'].iloc[-1])
volume = float(data['Volume'].iloc[-1])
bb_position = "in middle range"
if current_price > float(data['BB_upper'].iloc[-1] * 0.95):
bb_position = "near upper band (potential resistance)"
elif current_price < float(data['BB_lower'].iloc[-1] * 1.05):
bb_position = "near lower band (potential support)"
summary = f"""Analysis Summary for {symbol}:
β’ Current Price: ${current_price:.2f}
β’ Daily Change: {daily_return:+.2f}%
β’ Trend: {"Bullish" if sma_20 > sma_50 else "Bearish"} (20-day MA vs 50-day MA)
β’ RSI: {rsi:.2f} ({"Overbought" if rsi > 70 else "Oversold" if rsi < 30 else "Neutral"})
β’ Volume: {volume:,.0f}
Technical Signals:
β’ Moving Averages: Price is {"above" if current_price > sma_20 else "below"} 20-day MA
β’ Bollinger Bands: Price is {bb_position}
"""
return summary
except Exception as e:
return f"Error generating summary: {str(e)}"
def analyze_stock(company, lookback_days=180):
"""Main analysis function"""
try:
symbol = COMPANIES[company]
end_date = datetime.now()
start_date = end_date - timedelta(days=lookback_days)
# Download data
data = yf.download(symbol, start=start_date, end=end_date)
if len(data) == 0:
return "No data available for the selected period.", None, None
# Calculate metrics and create analysis
data = calculate_metrics(data)
summary = generate_summary(data, symbol)
plots = create_plots(data)
return summary, plots[0], plots[1]
except Exception as e:
return f"Error analyzing stock: {str(e)}", None, None
def create_interface():
"""Create Gradio interface"""
with gr.Blocks() as interface:
gr.Markdown("# Stock Market Analysis Dashboard")
with gr.Row():
company = gr.Dropdown(
choices=list(COMPANIES.keys()),
label="Select Company",
value="Apple (AAPL)"
)
lookback = gr.Slider(
minimum=30,
maximum=365,
value=180,
step=1,
label="Lookback Period (days)"
)
refresh_btn = gr.Button("π Refresh")
with gr.Row():
summary = gr.Textbox(label="Analysis Summary", lines=10)
with gr.Row():
plot1 = gr.Plot(label="Price Analysis")
plot2 = gr.Plot(label="Technical Analysis")
# Event handlers
refresh_btn.click(
fn=analyze_stock,
inputs=[company, lookback],
outputs=[summary, plot1, plot2]
)
company.change(
fn=analyze_stock,
inputs=[company, lookback],
outputs=[summary, plot1, plot2]
)
lookback.release(
fn=analyze_stock,
inputs=[company, lookback],
outputs=[summary, plot1, plot2]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True) |