Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from sklearn.preprocessing import StandardScaler
|
10 |
+
from typing import Dict, List, Optional, Tuple, Union
|
11 |
+
from datetime import datetime, timedelta
|
12 |
+
import warnings
|
13 |
+
warnings.filterwarnings('ignore')
|
14 |
+
|
15 |
+
# Constants
|
16 |
+
COMPANIES = {
|
17 |
+
'Apple (AAPL)': 'AAPL',
|
18 |
+
'Microsoft (MSFT)': 'MSFT',
|
19 |
+
'Amazon (AMZN)': 'AMZN',
|
20 |
+
'Google (GOOGL)': 'GOOGL',
|
21 |
+
'Meta (META)': 'META',
|
22 |
+
'Tesla (TSLA)': 'TSLA',
|
23 |
+
'NVIDIA (NVDA)': 'NVDA',
|
24 |
+
'JPMorgan Chase (JPM)': 'JPM',
|
25 |
+
'Johnson & Johnson (JNJ)': 'JNJ',
|
26 |
+
'Walmart (WMT)': 'WMT',
|
27 |
+
'Visa (V)': 'V',
|
28 |
+
'Mastercard (MA)': 'MA',
|
29 |
+
'Procter & Gamble (PG)': 'PG',
|
30 |
+
'UnitedHealth (UNH)': 'UNH',
|
31 |
+
'Home Depot (HD)': 'HD',
|
32 |
+
'Bank of America (BAC)': 'BAC',
|
33 |
+
'Coca-Cola (KO)': 'KO',
|
34 |
+
'Pfizer (PFE)': 'PFE',
|
35 |
+
'Disney (DIS)': 'DIS',
|
36 |
+
'Netflix (NFLX)': 'NFLX'
|
37 |
+
}
|
38 |
+
|
39 |
+
class TimeSeriesPreprocessor:
|
40 |
+
def __init__(self):
|
41 |
+
self.scaler = StandardScaler()
|
42 |
+
|
43 |
+
def process(self, data: pd.DataFrame) -> Tuple[pd.DataFrame, StandardScaler]:
|
44 |
+
processed = data.copy()
|
45 |
+
|
46 |
+
# Calculate returns and volatility
|
47 |
+
processed['Returns'] = processed['Close'].pct_change()
|
48 |
+
processed['Volatility'] = processed['Returns'].rolling(window=20).std()
|
49 |
+
|
50 |
+
# Technical indicators
|
51 |
+
processed['SMA_20'] = processed['Close'].rolling(window=20).mean()
|
52 |
+
processed['SMA_50'] = processed['Close'].rolling(window=50).mean()
|
53 |
+
processed['RSI'] = self.calculate_rsi(processed['Close'])
|
54 |
+
|
55 |
+
# MACD
|
56 |
+
exp1 = processed['Close'].ewm(span=12, adjust=False).mean()
|
57 |
+
exp2 = processed['Close'].ewm(span=26, adjust=False).mean()
|
58 |
+
processed['MACD'] = exp1 - exp2
|
59 |
+
processed['Signal_Line'] = processed['MACD'].ewm(span=9, adjust=False).mean()
|
60 |
+
|
61 |
+
# Bollinger Bands
|
62 |
+
processed['BB_middle'] = processed['Close'].rolling(window=20).mean()
|
63 |
+
processed['BB_upper'] = processed['BB_middle'] + 2 * processed['Close'].rolling(window=20).std()
|
64 |
+
processed['BB_lower'] = processed['BB_middle'] - 2 * processed['Close'].rolling(window=20).std()
|
65 |
+
|
66 |
+
# Handle missing values
|
67 |
+
processed = processed.fillna(method='ffill').fillna(method='bfill')
|
68 |
+
|
69 |
+
# Scale numerical features
|
70 |
+
numerical_cols = ['Close', 'Volume', 'Returns', 'Volatility']
|
71 |
+
processed[numerical_cols] = self.scaler.fit_transform(processed[numerical_cols])
|
72 |
+
|
73 |
+
return processed, self.scaler
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
77 |
+
delta = prices.diff()
|
78 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
79 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
80 |
+
rs = gain / loss
|
81 |
+
return 100 - (100 / (1 + rs))
|
82 |
+
|
83 |
+
class AgenticRAGFramework:
|
84 |
+
def __init__(self):
|
85 |
+
self.preprocessor = TimeSeriesPreprocessor()
|
86 |
+
|
87 |
+
def analyze(self, data: pd.DataFrame) -> Dict:
|
88 |
+
processed_data, scaler = self.preprocessor.process(data)
|
89 |
+
|
90 |
+
analysis = {
|
91 |
+
'processed_data': processed_data,
|
92 |
+
'trend': self.analyze_trend(processed_data),
|
93 |
+
'technical': self.analyze_technical(processed_data),
|
94 |
+
'volatility': self.analyze_volatility(processed_data),
|
95 |
+
'summary': self.generate_summary(processed_data)
|
96 |
+
}
|
97 |
+
|
98 |
+
return analysis
|
99 |
+
|
100 |
+
def analyze_trend(self, data: pd.DataFrame) -> Dict:
|
101 |
+
sma_20 = data['SMA_20'].iloc[-1]
|
102 |
+
sma_50 = data['SMA_50'].iloc[-1]
|
103 |
+
|
104 |
+
trend = {
|
105 |
+
'direction': 'Bullish' if sma_20 > sma_50 else 'Bearish',
|
106 |
+
'strength': abs(sma_20 - sma_50) / sma_50,
|
107 |
+
'sma_20': sma_20,
|
108 |
+
'sma_50': sma_50
|
109 |
+
}
|
110 |
+
|
111 |
+
return trend
|
112 |
+
|
113 |
+
def analyze_technical(self, data: pd.DataFrame) -> Dict:
|
114 |
+
technical = {
|
115 |
+
'rsi': data['RSI'].iloc[-1],
|
116 |
+
'macd': data['MACD'].iloc[-1],
|
117 |
+
'signal_line': data['Signal_Line'].iloc[-1],
|
118 |
+
'bb_position': (data['Close'].iloc[-1] - data['BB_lower'].iloc[-1]) /
|
119 |
+
(data['BB_upper'].iloc[-1] - data['BB_lower'].iloc[-1])
|
120 |
+
}
|
121 |
+
|
122 |
+
return technical
|
123 |
+
|
124 |
+
def analyze_volatility(self, data: pd.DataFrame) -> Dict:
|
125 |
+
volatility = {
|
126 |
+
'current': data['Volatility'].iloc[-1],
|
127 |
+
'avg_20d': data['Volatility'].rolling(20).mean().iloc[-1],
|
128 |
+
'trend': 'Increasing' if data['Volatility'].iloc[-1] > data['Volatility'].iloc[-2] else 'Decreasing'
|
129 |
+
}
|
130 |
+
|
131 |
+
return volatility
|
132 |
+
|
133 |
+
def generate_summary(self, data: pd.DataFrame) -> str:
|
134 |
+
latest_close = data['Close'].iloc[-1]
|
135 |
+
prev_close = data['Close'].iloc[-2]
|
136 |
+
daily_return = (latest_close - prev_close) / prev_close * 100
|
137 |
+
|
138 |
+
rsi = data['RSI'].iloc[-1]
|
139 |
+
volatility = data['Volatility'].iloc[-1]
|
140 |
+
|
141 |
+
summary = f"""Market Analysis Summary:
|
142 |
+
|
143 |
+
• Price Action: The stock {'increased' if daily_return > 0 else 'decreased'} by {abs(daily_return):.2f}% in the last session.
|
144 |
+
|
145 |
+
• Technical Indicators:
|
146 |
+
- RSI is at {rsi:.2f} indicating {'overbought' if rsi > 70 else 'oversold' if rsi < 30 else 'neutral'} conditions
|
147 |
+
- Current volatility is {volatility:.2f} which is {'high' if volatility > 0.5 else 'moderate' if volatility > 0.2 else 'low'}
|
148 |
+
|
149 |
+
• Market Signals:
|
150 |
+
- MACD: {'Bullish' if data['MACD'].iloc[-1] > data['Signal_Line'].iloc[-1] else 'Bearish'} crossover
|
151 |
+
- Bollinger Bands: Price is {
|
152 |
+
'near upper band (potential resistance)' if data['BB_position'].iloc[-1] > 0.8
|
153 |
+
else 'near lower band (potential support)' if data['BB_position'].iloc[-1] < 0.2
|
154 |
+
else 'in middle range'}
|
155 |
+
"""
|
156 |
+
|
157 |
+
return summary
|
158 |
+
|
159 |
+
def create_analysis_plots(data: pd.DataFrame, analysis: Dict) -> List[go.Figure]:
|
160 |
+
# Price and Technical Indicators Plot
|
161 |
+
fig1 = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
162 |
+
subplot_titles=('Price and Technical Indicators', 'Volume'),
|
163 |
+
row_heights=[0.7, 0.3])
|
164 |
+
|
165 |
+
# Price and SMAs
|
166 |
+
fig1.add_trace(go.Scatter(x=data.index, y=data['Close'],
|
167 |
+
name='Close Price', line=dict(color='blue')), row=1, col=1)
|
168 |
+
fig1.add_trace(go.Scatter(x=data.index, y=data['SMA_20'],
|
169 |
+
name='SMA 20', line=dict(color='orange', dash='dash')), row=1, col=1)
|
170 |
+
fig1.add_trace(go.Scatter(x=data.index, y=data['SMA_50'],
|
171 |
+
name='SMA 50', line=dict(color='green', dash='dash')), row=1, col=1)
|
172 |
+
|
173 |
+
# Volume
|
174 |
+
fig1.add_trace(go.Bar(x=data.index, y=data['Volume'],
|
175 |
+
name='Volume', marker_color='lightblue'), row=2, col=1)
|
176 |
+
|
177 |
+
fig1.update_layout(height=600, title_text="Price Analysis")
|
178 |
+
|
179 |
+
# Technical Analysis Plot
|
180 |
+
fig2 = make_subplots(rows=3, cols=1, shared_xaxes=True,
|
181 |
+
subplot_titles=('RSI', 'MACD', 'Bollinger Bands'),
|
182 |
+
row_heights=[0.33, 0.33, 0.33])
|
183 |
+
|
184 |
+
# RSI
|
185 |
+
fig2.add_trace(go.Scatter(x=data.index, y=data['RSI'],
|
186 |
+
name='RSI', line=dict(color='purple')), row=1, col=1)
|
187 |
+
fig2.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
|
188 |
+
fig2.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
|
189 |
+
|
190 |
+
# MACD
|
191 |
+
fig2.add_trace(go.Scatter(x=data.index, y=data['MACD'],
|
192 |
+
name='MACD', line=dict(color='blue')), row=2, col=1)
|
193 |
+
fig2.add_trace(go.Scatter(x=data.index, y=data['Signal_Line'],
|
194 |
+
name='Signal Line', line=dict(color='red')), row=2, col=1)
|
195 |
+
|
196 |
+
# Bollinger Bands
|
197 |
+
fig2.add_trace(go.Scatter(x=data.index, y=data['BB_upper'],
|
198 |
+
name='Upper BB', line=dict(color='gray', dash='dash')), row=3, col=1)
|
199 |
+
fig2.add_trace(go.Scatter(x=data.index, y=data['BB_middle'],
|
200 |
+
name='Middle BB', line=dict(color='blue', dash='dash')), row=3, col=1)
|
201 |
+
fig2.add_trace(go.Scatter(x=data.index, y=data['BB_lower'],
|
202 |
+
name='Lower BB', line=dict(color='gray', dash='dash')), row=3, col=1)
|
203 |
+
|
204 |
+
fig2.update_layout(height=800, title_text="Technical Analysis")
|
205 |
+
|
206 |
+
return [fig1, fig2]
|
207 |
+
|
208 |
+
def analyze_stock(company: str, lookback_days: int) -> Tuple[str, List[go.Figure]]:
|
209 |
+
symbol = COMPANIES[company]
|
210 |
+
end_date = datetime.now()
|
211 |
+
start_date = end_date - timedelta(days=lookback_days)
|
212 |
+
|
213 |
+
# Download data
|
214 |
+
data = yf.download(symbol, start=start_date, end=end_date)
|
215 |
+
|
216 |
+
if len(data) == 0:
|
217 |
+
return "No data available for the selected period.", []
|
218 |
+
|
219 |
+
# Analyze data
|
220 |
+
framework = AgenticRAGFramework()
|
221 |
+
analysis = framework.analyze(data)
|
222 |
+
|
223 |
+
# Create plots
|
224 |
+
plots = create_analysis_plots(data, analysis)
|
225 |
+
|
226 |
+
return analysis['summary'], plots
|
227 |
+
|
228 |
+
def create_gradio_interface():
|
229 |
+
with gr.Blocks() as interface:
|
230 |
+
gr.Markdown("# Stock Market Analysis with Agentic RAG")
|
231 |
+
|
232 |
+
with gr.Row():
|
233 |
+
company = gr.Dropdown(choices=list(COMPANIES.keys()), label="Select Company")
|
234 |
+
lookback = gr.Slider(minimum=30, maximum=365, value=180, step=1, label="Lookback Period (days)")
|
235 |
+
|
236 |
+
analyze_btn = gr.Button("Analyze")
|
237 |
+
|
238 |
+
with gr.Row():
|
239 |
+
summary = gr.Textbox(label="Analysis Summary", lines=10)
|
240 |
+
|
241 |
+
with gr.Row():
|
242 |
+
plot1 = gr.Plot(label="Price Analysis")
|
243 |
+
plot2 = gr.Plot(label="Technical Analysis")
|
244 |
+
|
245 |
+
analyze_btn.click(
|
246 |
+
fn=analyze_stock,
|
247 |
+
inputs=[company, lookback],
|
248 |
+
outputs=[summary, plot1, plot2]
|
249 |
+
)
|
250 |
+
|
251 |
+
return interface
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
interface = create_gradio_interface()
|
255 |
+
interface.launch(share=True)
|