Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,10 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
import plotly.graph_objects as go
|
6 |
from plotly.subplots import make_subplots
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
from sklearn.preprocessing import StandardScaler
|
10 |
-
from typing import Dict, List, Optional, Tuple, Union
|
11 |
from datetime import datetime, timedelta
|
12 |
import warnings
|
13 |
warnings.filterwarnings('ignore')
|
14 |
|
15 |
-
# Constants
|
16 |
COMPANIES = {
|
17 |
'Apple (AAPL)': 'AAPL',
|
18 |
'Microsoft (MSFT)': 'MSFT',
|
@@ -36,204 +31,168 @@ COMPANIES = {
|
|
36 |
'Netflix (NFLX)': 'NFLX'
|
37 |
}
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
self.scaler = StandardScaler()
|
42 |
-
|
43 |
-
def process(self, data: pd.DataFrame) -> Tuple[pd.DataFrame, StandardScaler]:
|
44 |
-
processed = data.copy()
|
45 |
-
|
46 |
-
# Calculate returns and volatility
|
47 |
-
processed['Returns'] = processed['Close'].pct_change()
|
48 |
-
processed['Volatility'] = processed['Returns'].rolling(window=20).std()
|
49 |
-
|
50 |
-
# Technical indicators
|
51 |
-
processed['SMA_20'] = processed['Close'].rolling(window=20).mean()
|
52 |
-
processed['SMA_50'] = processed['Close'].rolling(window=50).mean()
|
53 |
-
processed['RSI'] = self.calculate_rsi(processed['Close'])
|
54 |
-
|
55 |
-
# MACD
|
56 |
-
exp1 = processed['Close'].ewm(span=12, adjust=False).mean()
|
57 |
-
exp2 = processed['Close'].ewm(span=26, adjust=False).mean()
|
58 |
-
processed['MACD'] = exp1 - exp2
|
59 |
-
processed['Signal_Line'] = processed['MACD'].ewm(span=9, adjust=False).mean()
|
60 |
-
|
61 |
-
# Bollinger Bands
|
62 |
-
processed['BB_middle'] = processed['Close'].rolling(window=20).mean()
|
63 |
-
processed['BB_upper'] = processed['BB_middle'] + 2 * processed['Close'].rolling(window=20).std()
|
64 |
-
processed['BB_lower'] = processed['BB_middle'] - 2 * processed['Close'].rolling(window=20).std()
|
65 |
-
|
66 |
-
# Handle missing values
|
67 |
-
processed = processed.fillna(method='ffill').fillna(method='bfill')
|
68 |
-
|
69 |
-
# Scale numerical features
|
70 |
-
numerical_cols = ['Close', 'Volume', 'Returns', 'Volatility']
|
71 |
-
processed[numerical_cols] = self.scaler.fit_transform(processed[numerical_cols])
|
72 |
-
|
73 |
-
return processed, self.scaler
|
74 |
-
|
75 |
-
@staticmethod
|
76 |
-
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
77 |
-
delta = prices.diff()
|
78 |
-
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
79 |
-
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
80 |
-
rs = gain / loss
|
81 |
-
return 100 - (100 / (1 + rs))
|
82 |
-
|
83 |
-
class AgenticRAGFramework:
|
84 |
-
def __init__(self):
|
85 |
-
self.preprocessor = TimeSeriesPreprocessor()
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
'processed_data': processed_data,
|
92 |
-
'trend': self.analyze_trend(processed_data),
|
93 |
-
'technical': self.analyze_technical(processed_data),
|
94 |
-
'volatility': self.analyze_volatility(processed_data),
|
95 |
-
'summary': self.generate_summary(processed_data)
|
96 |
-
}
|
97 |
-
|
98 |
-
return analysis
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
'strength': abs(sma_20 - sma_50) / sma_50,
|
107 |
-
'sma_20': sma_20,
|
108 |
-
'sma_50': sma_50
|
109 |
-
}
|
110 |
-
|
111 |
-
return trend
|
112 |
-
|
113 |
-
def analyze_technical(self, data: pd.DataFrame) -> Dict:
|
114 |
-
technical = {
|
115 |
-
'rsi': data['RSI'].iloc[-1],
|
116 |
-
'macd': data['MACD'].iloc[-1],
|
117 |
-
'signal_line': data['Signal_Line'].iloc[-1],
|
118 |
-
'bb_position': (data['Close'].iloc[-1] - data['BB_lower'].iloc[-1]) /
|
119 |
-
(data['BB_upper'].iloc[-1] - data['BB_lower'].iloc[-1])
|
120 |
-
}
|
121 |
-
|
122 |
-
return technical
|
123 |
-
|
124 |
-
def analyze_volatility(self, data: pd.DataFrame) -> Dict:
|
125 |
-
volatility = {
|
126 |
-
'current': data['Volatility'].iloc[-1],
|
127 |
-
'avg_20d': data['Volatility'].rolling(20).mean().iloc[-1],
|
128 |
-
'trend': 'Increasing' if data['Volatility'].iloc[-1] > data['Volatility'].iloc[-2] else 'Decreasing'
|
129 |
-
}
|
130 |
-
|
131 |
-
return volatility
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
summary = f"""Market Analysis Summary:
|
142 |
-
|
143 |
-
• Price Action: The stock {'increased' if daily_return > 0 else 'decreased'} by {abs(daily_return):.2f}% in the last session.
|
144 |
-
|
145 |
-
• Technical Indicators:
|
146 |
-
- RSI is at {rsi:.2f} indicating {'overbought' if rsi > 70 else 'oversold' if rsi < 30 else 'neutral'} conditions
|
147 |
-
- Current volatility is {volatility:.2f} which is {'high' if volatility > 0.5 else 'moderate' if volatility > 0.2 else 'low'}
|
148 |
-
|
149 |
-
• Market Signals:
|
150 |
-
- MACD: {'Bullish' if data['MACD'].iloc[-1] > data['Signal_Line'].iloc[-1] else 'Bearish'} crossover
|
151 |
-
- Bollinger Bands: Price is {
|
152 |
-
'near upper band (potential resistance)' if data['BB_position'].iloc[-1] > 0.8
|
153 |
-
else 'near lower band (potential support)' if data['BB_position'].iloc[-1] < 0.2
|
154 |
-
else 'in middle range'}
|
155 |
-
"""
|
156 |
-
|
157 |
-
return summary
|
158 |
|
159 |
-
def create_analysis_plots(data: pd.DataFrame
|
160 |
-
# Price and
|
161 |
fig1 = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
162 |
-
subplot_titles=('Price and
|
163 |
-
row_heights=[0.7, 0.3]
|
|
|
164 |
|
165 |
# Price and SMAs
|
166 |
-
fig1.add_trace(
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
fig1.add_trace(
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
# Volume
|
174 |
-
fig1.add_trace(
|
175 |
-
|
|
|
|
|
176 |
|
177 |
fig1.update_layout(height=600, title_text="Price Analysis")
|
178 |
|
179 |
-
# Technical
|
180 |
-
fig2 = make_subplots(rows=
|
181 |
-
subplot_titles=('RSI', '
|
182 |
-
row_heights=[0.
|
|
|
183 |
|
184 |
# RSI
|
185 |
-
fig2.add_trace(
|
186 |
-
|
|
|
|
|
187 |
fig2.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
|
188 |
fig2.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
|
189 |
|
190 |
-
# MACD
|
191 |
-
fig2.add_trace(go.Scatter(x=data.index, y=data['MACD'],
|
192 |
-
name='MACD', line=dict(color='blue')), row=2, col=1)
|
193 |
-
fig2.add_trace(go.Scatter(x=data.index, y=data['Signal_Line'],
|
194 |
-
name='Signal Line', line=dict(color='red')), row=2, col=1)
|
195 |
-
|
196 |
# Bollinger Bands
|
197 |
-
fig2.add_trace(
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
fig2.add_trace(
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
return [fig1, fig2]
|
207 |
|
208 |
-
def
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
227 |
|
228 |
def create_gradio_interface():
|
229 |
with gr.Blocks() as interface:
|
230 |
-
gr.Markdown("# Stock Market Analysis
|
231 |
|
232 |
with gr.Row():
|
233 |
-
company = gr.Dropdown(
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
with gr.Row():
|
239 |
summary = gr.Textbox(label="Analysis Summary", lines=10)
|
@@ -242,12 +201,24 @@ def create_gradio_interface():
|
|
242 |
plot1 = gr.Plot(label="Price Analysis")
|
243 |
plot2 = gr.Plot(label="Technical Analysis")
|
244 |
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
fn=analyze_stock,
|
247 |
inputs=[company, lookback],
|
248 |
outputs=[summary, plot1, plot2]
|
249 |
)
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
251 |
return interface
|
252 |
|
253 |
if __name__ == "__main__":
|
|
|
4 |
import numpy as np
|
5 |
import plotly.graph_objects as go
|
6 |
from plotly.subplots import make_subplots
|
|
|
|
|
|
|
|
|
7 |
from datetime import datetime, timedelta
|
8 |
import warnings
|
9 |
warnings.filterwarnings('ignore')
|
10 |
|
|
|
11 |
COMPANIES = {
|
12 |
'Apple (AAPL)': 'AAPL',
|
13 |
'Microsoft (MSFT)': 'MSFT',
|
|
|
31 |
'Netflix (NFLX)': 'NFLX'
|
32 |
}
|
33 |
|
34 |
+
def calculate_metrics(data: pd.DataFrame) -> pd.DataFrame:
|
35 |
+
df = data.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Basic metrics
|
38 |
+
df['Returns'] = df['Close'].pct_change()
|
39 |
+
df['SMA_20'] = df['Close'].rolling(window=20).mean()
|
40 |
+
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# RSI
|
43 |
+
delta = df['Close'].diff()
|
44 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
45 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
46 |
+
rs = gain / loss
|
47 |
+
df['RSI'] = 100 - (100 / (1 + rs))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Bollinger Bands
|
50 |
+
df['BB_middle'] = df['Close'].rolling(window=20).mean()
|
51 |
+
bb_std = df['Close'].rolling(window=20).std()
|
52 |
+
df['BB_upper'] = df['BB_middle'] + (2 * bb_std)
|
53 |
+
df['BB_lower'] = df['BB_middle'] - (2 * bb_std)
|
54 |
+
|
55 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
def create_analysis_plots(data: pd.DataFrame) -> list:
|
58 |
+
# Price and Volume Plot
|
59 |
fig1 = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
60 |
+
subplot_titles=('Price and Moving Averages', 'Volume'),
|
61 |
+
row_heights=[0.7, 0.3],
|
62 |
+
vertical_spacing=0.1)
|
63 |
|
64 |
# Price and SMAs
|
65 |
+
fig1.add_trace(
|
66 |
+
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
|
67 |
+
row=1, col=1
|
68 |
+
)
|
69 |
+
fig1.add_trace(
|
70 |
+
go.Scatter(x=data.index, y=data['SMA_20'], name='SMA 20', line=dict(color='orange', dash='dash')),
|
71 |
+
row=1, col=1
|
72 |
+
)
|
73 |
+
fig1.add_trace(
|
74 |
+
go.Scatter(x=data.index, y=data['SMA_50'], name='SMA 50', line=dict(color='green', dash='dash')),
|
75 |
+
row=1, col=1
|
76 |
+
)
|
77 |
|
78 |
# Volume
|
79 |
+
fig1.add_trace(
|
80 |
+
go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'),
|
81 |
+
row=2, col=1
|
82 |
+
)
|
83 |
|
84 |
fig1.update_layout(height=600, title_text="Price Analysis")
|
85 |
|
86 |
+
# Technical Indicators Plot
|
87 |
+
fig2 = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
88 |
+
subplot_titles=('RSI', 'Bollinger Bands'),
|
89 |
+
row_heights=[0.5, 0.5],
|
90 |
+
vertical_spacing=0.1)
|
91 |
|
92 |
# RSI
|
93 |
+
fig2.add_trace(
|
94 |
+
go.Scatter(x=data.index, y=data['RSI'], name='RSI', line=dict(color='purple')),
|
95 |
+
row=1, col=1
|
96 |
+
)
|
97 |
fig2.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
|
98 |
fig2.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# Bollinger Bands
|
101 |
+
fig2.add_trace(
|
102 |
+
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
|
103 |
+
row=2, col=1
|
104 |
+
)
|
105 |
+
fig2.add_trace(
|
106 |
+
go.Scatter(x=data.index, y=data['BB_upper'], name='Upper BB',
|
107 |
+
line=dict(color='gray', dash='dash')),
|
108 |
+
row=2, col=1
|
109 |
+
)
|
110 |
+
fig2.add_trace(
|
111 |
+
go.Scatter(x=data.index, y=data['BB_middle'], name='Middle BB',
|
112 |
+
line=dict(color='red', dash='dash')),
|
113 |
+
row=2, col=1
|
114 |
+
)
|
115 |
+
fig2.add_trace(
|
116 |
+
go.Scatter(x=data.index, y=data['BB_lower'], name='Lower BB',
|
117 |
+
line=dict(color='gray', dash='dash')),
|
118 |
+
row=2, col=1
|
119 |
+
)
|
120 |
+
|
121 |
+
fig2.update_layout(height=600, title_text="Technical Analysis")
|
122 |
|
123 |
return [fig1, fig2]
|
124 |
|
125 |
+
def generate_summary(data: pd.DataFrame) -> str:
|
126 |
+
current_price = data['Close'].iloc[-1]
|
127 |
+
prev_price = data['Close'].iloc[-2]
|
128 |
+
daily_return = ((current_price - prev_price) / prev_price) * 100
|
129 |
+
|
130 |
+
rsi = data['RSI'].iloc[-1]
|
131 |
+
sma_20 = data['SMA_20'].iloc[-1]
|
132 |
+
sma_50 = data['SMA_50'].iloc[-1]
|
133 |
+
|
134 |
+
summary = f"""Market Analysis Summary:
|
135 |
+
|
136 |
+
• Current Price: ${current_price:.2f}
|
137 |
+
• Daily Change: {daily_return:+.2f}%
|
138 |
+
• Trend: {'Bullish' if sma_20 > sma_50 else 'Bearish'} (20-day MA vs 50-day MA)
|
139 |
+
• RSI: {rsi:.2f} ({'Overbought' if rsi > 70 else 'Oversold' if rsi < 30 else 'Neutral'})
|
140 |
+
• Volume: {data['Volume'].iloc[-1]:,.0f}
|
141 |
+
|
142 |
+
Technical Signals:
|
143 |
+
• Moving Averages: Price is {'above' if current_price > sma_20 else 'below'} 20-day MA
|
144 |
+
• Bollinger Bands: Price is {
|
145 |
+
'near upper band (potential resistance)' if current_price > data['BB_upper'].iloc[-1] * 0.95
|
146 |
+
else 'near lower band (potential support)' if current_price < data['BB_lower'].iloc[-1] * 1.05
|
147 |
+
else 'in middle range'}
|
148 |
+
"""
|
149 |
+
return summary
|
150 |
+
|
151 |
+
def analyze_stock(company: str, lookback_days: int = 180) -> tuple:
|
152 |
+
try:
|
153 |
+
symbol = COMPANIES[company]
|
154 |
+
end_date = datetime.now()
|
155 |
+
start_date = end_date - timedelta(days=lookback_days)
|
156 |
+
|
157 |
+
# Download data
|
158 |
+
data = yf.download(symbol, start=start_date, end=end_date)
|
159 |
+
|
160 |
+
if len(data) == 0:
|
161 |
+
return "No data available for the selected period.", None, None
|
162 |
+
|
163 |
+
# Calculate metrics
|
164 |
+
data = calculate_metrics(data)
|
165 |
+
|
166 |
+
# Generate analysis
|
167 |
+
summary = generate_summary(data)
|
168 |
+
plots = create_analysis_plots(data)
|
169 |
+
|
170 |
+
return summary, plots[0], plots[1]
|
171 |
|
172 |
+
except Exception as e:
|
173 |
+
return f"Error analyzing stock: {str(e)}", None, None
|
174 |
+
|
175 |
+
def refresh_analysis(company, lookback_days):
|
176 |
+
return analyze_stock(company, lookback_days)
|
177 |
|
178 |
def create_gradio_interface():
|
179 |
with gr.Blocks() as interface:
|
180 |
+
gr.Markdown("# Stock Market Analysis Dashboard")
|
181 |
|
182 |
with gr.Row():
|
183 |
+
company = gr.Dropdown(
|
184 |
+
choices=list(COMPANIES.keys()),
|
185 |
+
label="Select Company",
|
186 |
+
value="Apple (AAPL)"
|
187 |
+
)
|
188 |
+
lookback = gr.Slider(
|
189 |
+
minimum=30,
|
190 |
+
maximum=365,
|
191 |
+
value=180,
|
192 |
+
step=1,
|
193 |
+
label="Lookback Period (days)"
|
194 |
+
)
|
195 |
+
refresh_btn = gr.Button("Refresh Analysis")
|
196 |
|
197 |
with gr.Row():
|
198 |
summary = gr.Textbox(label="Analysis Summary", lines=10)
|
|
|
201 |
plot1 = gr.Plot(label="Price Analysis")
|
202 |
plot2 = gr.Plot(label="Technical Analysis")
|
203 |
|
204 |
+
refresh_btn.click(
|
205 |
+
fn=refresh_analysis,
|
206 |
+
inputs=[company, lookback],
|
207 |
+
outputs=[summary, plot1, plot2]
|
208 |
+
)
|
209 |
+
|
210 |
+
# Also trigger analysis when company or lookback period changes
|
211 |
+
company.change(
|
212 |
fn=analyze_stock,
|
213 |
inputs=[company, lookback],
|
214 |
outputs=[summary, plot1, plot2]
|
215 |
)
|
216 |
+
lookback.release(
|
217 |
+
fn=analyze_stock,
|
218 |
+
inputs=[company, lookback],
|
219 |
+
outputs=[summary, plot1, plot2]
|
220 |
+
)
|
221 |
+
|
222 |
return interface
|
223 |
|
224 |
if __name__ == "__main__":
|