Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from datetime import datetime, timedelta
|
|
8 |
import warnings
|
9 |
warnings.filterwarnings('ignore')
|
10 |
|
|
|
11 |
COMPANIES = {
|
12 |
'Apple (AAPL)': 'AAPL',
|
13 |
'Microsoft (MSFT)': 'MSFT',
|
@@ -31,15 +32,16 @@ COMPANIES = {
|
|
31 |
'Netflix (NFLX)': 'NFLX'
|
32 |
}
|
33 |
|
34 |
-
def calculate_metrics(df
|
|
|
35 |
data = df.copy()
|
36 |
|
37 |
-
#
|
38 |
data['Returns'] = data['Close'].pct_change()
|
39 |
data['SMA_20'] = data['Close'].rolling(window=20).mean()
|
40 |
data['SMA_50'] = data['Close'].rolling(window=50).mean()
|
41 |
|
42 |
-
#
|
43 |
delta = data['Close'].diff()
|
44 |
gain = delta.clip(lower=0)
|
45 |
loss = -delta.clip(upper=0)
|
@@ -48,23 +50,25 @@ def calculate_metrics(df: pd.DataFrame) -> pd.DataFrame:
|
|
48 |
rs = avg_gain / avg_loss
|
49 |
data['RSI'] = 100 - (100 / (1 + rs))
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
data['
|
55 |
-
data['
|
56 |
-
data['BB_lower'] = rolling_mean - (rolling_std * 2)
|
57 |
|
58 |
return data
|
59 |
|
60 |
-
def
|
|
|
61 |
# Price and Volume Plot
|
62 |
-
fig1 = make_subplots(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
fig1.add_trace(
|
69 |
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
|
70 |
row=1, col=1
|
@@ -78,20 +82,22 @@ def create_analysis_plots(data: pd.DataFrame) -> list:
|
|
78 |
row=1, col=1
|
79 |
)
|
80 |
|
81 |
-
# Volume
|
82 |
fig1.add_trace(
|
83 |
go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'),
|
84 |
row=2, col=1
|
85 |
)
|
86 |
|
87 |
fig1.update_layout(height=600, title_text="Price Analysis")
|
88 |
-
|
89 |
-
# Technical
|
90 |
-
fig2 = make_subplots(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
# RSI
|
96 |
fig2.add_trace(
|
97 |
go.Scatter(x=data.index, y=data['RSI'], name='RSI', line=dict(color='purple')),
|
@@ -105,53 +111,52 @@ def create_analysis_plots(data: pd.DataFrame) -> list:
|
|
105 |
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
|
106 |
row=2, col=1
|
107 |
)
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
fig2.add_trace(
|
114 |
-
go.Scatter(x=data.index, y=data['BB_middle'], name='Middle BB',
|
115 |
-
line=dict(color='red', dash='dash')),
|
116 |
-
row=2, col=1
|
117 |
-
)
|
118 |
-
fig2.add_trace(
|
119 |
-
go.Scatter(x=data.index, y=data['BB_lower'], name='Lower BB',
|
120 |
-
line=dict(color='gray', dash='dash')),
|
121 |
-
row=2, col=1
|
122 |
-
)
|
123 |
|
124 |
fig2.update_layout(height=600, title_text="Technical Analysis")
|
125 |
|
126 |
return [fig1, fig2]
|
127 |
|
128 |
-
def generate_summary(data
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
• Current Price: ${current_price:.2f}
|
140 |
• Daily Change: {daily_return:+.2f}%
|
141 |
-
• Trend: {
|
142 |
-
• RSI: {rsi:.2f} ({
|
143 |
-
• Volume: {
|
144 |
|
145 |
Technical Signals:
|
146 |
-
• Moving Averages: Price is {
|
147 |
-
• Bollinger Bands: Price is {
|
148 |
-
'near upper band (potential resistance)' if current_price > data['BB_upper'].iloc[-1] * 0.95
|
149 |
-
else 'near lower band (potential support)' if current_price < data['BB_lower'].iloc[-1] * 1.05
|
150 |
-
else 'in middle range'}
|
151 |
"""
|
152 |
-
|
|
|
|
|
153 |
|
154 |
-
def analyze_stock(company
|
|
|
155 |
try:
|
156 |
symbol = COMPANIES[company]
|
157 |
end_date = datetime.now()
|
@@ -159,26 +164,21 @@ def analyze_stock(company: str, lookback_days: int = 180) -> tuple:
|
|
159 |
|
160 |
# Download data
|
161 |
data = yf.download(symbol, start=start_date, end=end_date)
|
162 |
-
|
163 |
if len(data) == 0:
|
164 |
return "No data available for the selected period.", None, None
|
165 |
|
166 |
-
# Calculate metrics
|
167 |
data = calculate_metrics(data)
|
168 |
-
|
169 |
-
# Generate analysis
|
170 |
summary = generate_summary(data, symbol)
|
171 |
-
plots =
|
172 |
|
173 |
return summary, plots[0], plots[1]
|
174 |
-
|
175 |
except Exception as e:
|
176 |
return f"Error analyzing stock: {str(e)}", None, None
|
177 |
|
178 |
-
def
|
179 |
-
|
180 |
-
|
181 |
-
def create_gradio_interface():
|
182 |
with gr.Blocks() as interface:
|
183 |
gr.Markdown("# Stock Market Analysis Dashboard")
|
184 |
|
@@ -199,23 +199,24 @@ def create_gradio_interface():
|
|
199 |
|
200 |
with gr.Row():
|
201 |
summary = gr.Textbox(label="Analysis Summary", lines=10)
|
202 |
-
|
203 |
with gr.Row():
|
204 |
plot1 = gr.Plot(label="Price Analysis")
|
205 |
plot2 = gr.Plot(label="Technical Analysis")
|
206 |
|
|
|
207 |
refresh_btn.click(
|
208 |
-
fn=
|
209 |
inputs=[company, lookback],
|
210 |
outputs=[summary, plot1, plot2]
|
211 |
)
|
212 |
|
213 |
-
# Auto-update on selection changes
|
214 |
company.change(
|
215 |
fn=analyze_stock,
|
216 |
inputs=[company, lookback],
|
217 |
outputs=[summary, plot1, plot2]
|
218 |
)
|
|
|
219 |
lookback.release(
|
220 |
fn=analyze_stock,
|
221 |
inputs=[company, lookback],
|
@@ -225,5 +226,5 @@ def create_gradio_interface():
|
|
225 |
return interface
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
-
interface =
|
229 |
interface.launch(share=True)
|
|
|
8 |
import warnings
|
9 |
warnings.filterwarnings('ignore')
|
10 |
|
11 |
+
# List of companies with their symbols
|
12 |
COMPANIES = {
|
13 |
'Apple (AAPL)': 'AAPL',
|
14 |
'Microsoft (MSFT)': 'MSFT',
|
|
|
32 |
'Netflix (NFLX)': 'NFLX'
|
33 |
}
|
34 |
|
35 |
+
def calculate_metrics(df):
|
36 |
+
"""Calculate technical indicators"""
|
37 |
data = df.copy()
|
38 |
|
39 |
+
# Basic metrics
|
40 |
data['Returns'] = data['Close'].pct_change()
|
41 |
data['SMA_20'] = data['Close'].rolling(window=20).mean()
|
42 |
data['SMA_50'] = data['Close'].rolling(window=50).mean()
|
43 |
|
44 |
+
# RSI
|
45 |
delta = data['Close'].diff()
|
46 |
gain = delta.clip(lower=0)
|
47 |
loss = -delta.clip(upper=0)
|
|
|
50 |
rs = avg_gain / avg_loss
|
51 |
data['RSI'] = 100 - (100 / (1 + rs))
|
52 |
|
53 |
+
# Bollinger Bands
|
54 |
+
data['BB_middle'] = data['Close'].rolling(window=20).mean()
|
55 |
+
bb_std = data['Close'].rolling(window=20).std()
|
56 |
+
data['BB_upper'] = data['BB_middle'] + (2 * bb_std)
|
57 |
+
data['BB_lower'] = data['BB_middle'] - (2 * bb_std)
|
|
|
58 |
|
59 |
return data
|
60 |
|
61 |
+
def create_plots(data):
|
62 |
+
"""Create analysis plots"""
|
63 |
# Price and Volume Plot
|
64 |
+
fig1 = make_subplots(
|
65 |
+
rows=2, cols=1,
|
66 |
+
shared_xaxes=True,
|
67 |
+
vertical_spacing=0.1,
|
68 |
+
subplot_titles=('Price and Moving Averages', 'Volume'),
|
69 |
+
row_heights=[0.7, 0.3]
|
70 |
+
)
|
71 |
+
|
72 |
fig1.add_trace(
|
73 |
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
|
74 |
row=1, col=1
|
|
|
82 |
row=1, col=1
|
83 |
)
|
84 |
|
|
|
85 |
fig1.add_trace(
|
86 |
go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'),
|
87 |
row=2, col=1
|
88 |
)
|
89 |
|
90 |
fig1.update_layout(height=600, title_text="Price Analysis")
|
91 |
+
|
92 |
+
# Technical Analysis Plot
|
93 |
+
fig2 = make_subplots(
|
94 |
+
rows=2, cols=1,
|
95 |
+
shared_xaxes=True,
|
96 |
+
vertical_spacing=0.1,
|
97 |
+
subplot_titles=('RSI', 'Bollinger Bands'),
|
98 |
+
row_heights=[0.5, 0.5]
|
99 |
+
)
|
100 |
+
|
101 |
# RSI
|
102 |
fig2.add_trace(
|
103 |
go.Scatter(x=data.index, y=data['RSI'], name='RSI', line=dict(color='purple')),
|
|
|
111 |
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
|
112 |
row=2, col=1
|
113 |
)
|
114 |
+
for band, color in [('BB_upper', 'gray'), ('BB_middle', 'red'), ('BB_lower', 'gray')]:
|
115 |
+
fig2.add_trace(
|
116 |
+
go.Scatter(x=data.index, y=data[band], name=band, line=dict(color=color, dash='dash')),
|
117 |
+
row=2, col=1
|
118 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
fig2.update_layout(height=600, title_text="Technical Analysis")
|
121 |
|
122 |
return [fig1, fig2]
|
123 |
|
124 |
+
def generate_summary(data, symbol):
|
125 |
+
"""Generate analysis summary"""
|
126 |
+
try:
|
127 |
+
current_price = float(data['Close'].iloc[-1])
|
128 |
+
prev_price = float(data['Close'].iloc[-2])
|
129 |
+
daily_return = ((current_price - prev_price) / prev_price) * 100
|
130 |
+
|
131 |
+
rsi = float(data['RSI'].iloc[-1])
|
132 |
+
sma_20 = float(data['SMA_20'].iloc[-1])
|
133 |
+
sma_50 = float(data['SMA_50'].iloc[-1])
|
134 |
+
volume = float(data['Volume'].iloc[-1])
|
135 |
+
|
136 |
+
bb_position = "in middle range"
|
137 |
+
if current_price > float(data['BB_upper'].iloc[-1] * 0.95):
|
138 |
+
bb_position = "near upper band (potential resistance)"
|
139 |
+
elif current_price < float(data['BB_lower'].iloc[-1] * 1.05):
|
140 |
+
bb_position = "near lower band (potential support)"
|
141 |
+
|
142 |
+
summary = f"""Analysis Summary for {symbol}:
|
143 |
+
|
144 |
• Current Price: ${current_price:.2f}
|
145 |
• Daily Change: {daily_return:+.2f}%
|
146 |
+
• Trend: {"Bullish" if sma_20 > sma_50 else "Bearish"} (20-day MA vs 50-day MA)
|
147 |
+
• RSI: {rsi:.2f} ({"Overbought" if rsi > 70 else "Oversold" if rsi < 30 else "Neutral"})
|
148 |
+
• Volume: {volume:,.0f}
|
149 |
|
150 |
Technical Signals:
|
151 |
+
• Moving Averages: Price is {"above" if current_price > sma_20 else "below"} 20-day MA
|
152 |
+
• Bollinger Bands: Price is {bb_position}
|
|
|
|
|
|
|
153 |
"""
|
154 |
+
return summary
|
155 |
+
except Exception as e:
|
156 |
+
return f"Error generating summary: {str(e)}"
|
157 |
|
158 |
+
def analyze_stock(company, lookback_days=180):
|
159 |
+
"""Main analysis function"""
|
160 |
try:
|
161 |
symbol = COMPANIES[company]
|
162 |
end_date = datetime.now()
|
|
|
164 |
|
165 |
# Download data
|
166 |
data = yf.download(symbol, start=start_date, end=end_date)
|
|
|
167 |
if len(data) == 0:
|
168 |
return "No data available for the selected period.", None, None
|
169 |
|
170 |
+
# Calculate metrics and create analysis
|
171 |
data = calculate_metrics(data)
|
|
|
|
|
172 |
summary = generate_summary(data, symbol)
|
173 |
+
plots = create_plots(data)
|
174 |
|
175 |
return summary, plots[0], plots[1]
|
176 |
+
|
177 |
except Exception as e:
|
178 |
return f"Error analyzing stock: {str(e)}", None, None
|
179 |
|
180 |
+
def create_interface():
|
181 |
+
"""Create Gradio interface"""
|
|
|
|
|
182 |
with gr.Blocks() as interface:
|
183 |
gr.Markdown("# Stock Market Analysis Dashboard")
|
184 |
|
|
|
199 |
|
200 |
with gr.Row():
|
201 |
summary = gr.Textbox(label="Analysis Summary", lines=10)
|
202 |
+
|
203 |
with gr.Row():
|
204 |
plot1 = gr.Plot(label="Price Analysis")
|
205 |
plot2 = gr.Plot(label="Technical Analysis")
|
206 |
|
207 |
+
# Event handlers
|
208 |
refresh_btn.click(
|
209 |
+
fn=analyze_stock,
|
210 |
inputs=[company, lookback],
|
211 |
outputs=[summary, plot1, plot2]
|
212 |
)
|
213 |
|
|
|
214 |
company.change(
|
215 |
fn=analyze_stock,
|
216 |
inputs=[company, lookback],
|
217 |
outputs=[summary, plot1, plot2]
|
218 |
)
|
219 |
+
|
220 |
lookback.release(
|
221 |
fn=analyze_stock,
|
222 |
inputs=[company, lookback],
|
|
|
226 |
return interface
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
+
interface = create_interface()
|
230 |
interface.launch(share=True)
|