Spaces:
Runtime error
Runtime error
File size: 5,690 Bytes
7199111 8ecf185 7199111 8ecf185 4108613 f58a881 d977393 ba89bc9 4108613 fbdc20b 088b445 4108613 088b445 4108613 f58a881 4108613 ba89bc9 f58a881 3657998 f58a881 29d5352 1864cbd 553b504 1864cbd 08e821c 1864cbd 7ab6c84 1864cbd 444610b bfd9d6b bfc3611 1864cbd bfc3611 1864cbd bfc3611 1864cbd bfc3611 1864cbd bfc3611 29531dc 553b504 7270c05 9eb9696 4108613 ba89bc9 553b504 088b445 4108613 088b445 4108613 8ecf185 9d9428d bbcce29 4108613 9eb9696 bbcce29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from flask import *
from PIL import Image
import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime
#################
from flask_socketio import SocketIO,emit
import base64
##################
cnt =1
app = Flask (__name__ )
#################
app.config['SECRET_KEY'] = 'secret!'
socket = SocketIO(app,async_mode="eventlet")
#######################
######################
def base64_to_image(base64_string):
# Extract the base64 encoded binary data from the input string
base64_data = base64_string.split(",")[1]
# Decode the base64 data to bytes
image_bytes = base64.b64decode(base64_data)
# Convert the bytes to numpy array
image_array = np.frombuffer(image_bytes, dtype=np.uint8)
# Decode the numpy array as an image using OpenCV
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
return image
@socket.on("connect")
def test_connect():
print("Connected")
emit("my response", {"data": "Connected"})
@socket.on("image")
def receive_image(image):
global cnt
s = True
while s :
# Decode the base64-encoded image data
image = base64_to_image(image)
known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
known_face_encodings = []
# Load known face encodings
sir_image = face_recognition.load_image_file("photos/sir.jpeg")
sir_encoding = face_recognition.face_encodings(sir_image)[0]
vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
maam_image = face_recognition.load_image_file("photos/maam.png")
maam_encoding = face_recognition.face_encodings(maam_image)[0]
known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
students = known_faces_names.copy()
face_locations = []
face_encodings = []
face_names = []
# now = datetime.now()
# current_date = now.strftime("%Y-%m-%d")
# csv_file = open(f"{current_date}.csv", "a+", newline="")
# # csv_writer = csv.writer(csv_file)
# small_frame = cv2.resize(image, (0, 0), fx=0.25, fy=0.25)
# rgb_small_frame = small_frame[:, :, ::-1]
# # emit("result",{"name":"level " +str(cnt),"score":str(len(face_encodings))})
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
face_names = []
emit("result",{"name":"level2 " +str(cnt),"score":str(len(face_encodings))})
cnt = cnt +1
for face_encoding in face_encodings:
# emit("result",{"name":"in for ","score":"34"})
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = ""
face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distance)
if matches[best_match_index]:
name = known_faces_names[best_match_index]
face_names.append(name)
s = False
break
emit("result",{"name":str(name),"score":"myScore"})
# # for name in face_names:
# # if name in known_faces_names and name in students and name not in existing_names:
# # students.remove(name)
# # print(students)
# # print(f"Attendance recorded for {name}")
# # current_time = now.strftime("%H-%M-%S")
# # csv_writer.writerow([name, current_time, "Present"])
# # existing_names.add(name) # Add the name to the set of existing names
@app.route ("/")
def home():
return render_template("index.html")
@app.route('/table')
def show_table():
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Read the CSV file to get attendance data
attendance=[]
try:
with open(f"{current_date}.csv", newline="") as csv_file:
csv_reader = csv.reader(csv_file)
attendance = list(csv_reader)
except FileNotFoundError:
pass
# Render the table.html template and pass the attendance data
return render_template('attendance.html', attendance=attendance)
if __name__ == '__main__':
socket.run(app,host="0.0.0.0", port=7860)
###########################################################################
# @app.route('/table')
# def show_table():
# # Get the current date
# current_date = datetime.now().strftime("%Y-%m-%d")
# # Read the CSV file to get attendance data
# attendance=[]
# try:
# with open(f"{current_date}.csv", newline="") as csv_file:
# csv_reader = csv.reader(csv_file)
# attendance = list(csv_reader)
# except FileNotFoundError:
# pass
# # Render the table.html template and pass the attendance data
# return render_template('attendance.html', attendance=attendance)
# @app.route("/")
# def home():
# return render_template('index.html')
# if __name__ == "__main__":
# socket.run(app,host="0.0.0.0", port=7860)
|