File size: 5,296 Bytes
b47040f
 
 
ec8e5d1
07fb84b
fae072e
07fb84b
fae072e
 
b47040f
 
 
 
ffb4b75
b47040f
 
 
 
 
 
 
a8c600f
ec8e5d1
b47040f
07fb84b
 
ffb4b75
d061dc5
ec8e5d1
 
 
b47040f
ec8e5d1
b47040f
 
 
 
ec8e5d1
 
 
b47040f
ffb4b75
 
a8c600f
81cff83
b47040f
 
 
 
ec8e5d1
b47040f
 
 
 
 
3f068be
b47040f
 
ffb4b75
b47040f
 
 
 
ec8e5d1
b47040f
ec8e5d1
b47040f
 
 
 
 
 
 
ec8e5d1
b47040f
 
ec8e5d1
 
 
ffb4b75
d061dc5
b47040f
ffb4b75
b47040f
ec8e5d1
3f068be
b47040f
 
 
ec8e5d1
b47040f
 
 
3f068be
ffb4b75
ec8e5d1
b47040f
 
 
ec8e5d1
ffb4b75
 
 
b47040f
ec8e5d1
ffb4b75
ec8e5d1
b47040f
 
 
 
 
 
 
 
 
 
 
ec8e5d1
 
 
 
 
 
 
ffb4b75
ec8e5d1
b47040f
 
ffb4b75
 
b47040f
 
 
 
ec8e5d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
import tempfile
import logging
from typing import List, Optional
import torch
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "distilgpt2"
MAX_LENGTH_FRACTION = 0.2  # Set max_length to 20% of input length

# Check for GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
st.sidebar.write(f"Using device: {device}")

@st.cache_data
def load_embeddings(model_name: str) -> Optional[HuggingFaceEmbeddings]:
    """Load the embedding model."""
    try:
        return HuggingFaceEmbeddings(model_name=model_name)
    except Exception as e:
        logger.error(f"Failed to load embeddings: {e}")
        return None

@st.cache_data
def load_llm(model_name: str, max_length: int) -> Optional[HuggingFacePipeline]:
    """Load the language model."""
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name)
        pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_length=max_length)
        return HuggingFacePipeline(pipeline=pipe)
    except Exception as e:
        logger.error(f"Failed to load LLM: {e}")
        return None

def process_pdf(file) -> Optional[List[Document]]:
    """Process the uploaded PDF file."""
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
            temp_file.write(file.getvalue())
            temp_file_path = temp_file.name

        loader = PyPDFLoader(file_path=temp_file_path)
        pages = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
        documents = text_splitter.split_documents(pages)
        return documents
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        return None

def create_vector_store(documents: List[Document], embeddings: HuggingFaceEmbeddings) -> Optional[FAISS]:
    """Create the vector store."""
    try:
        return FAISS.from_documents(documents, embeddings)
    except Exception as e:
        logger.error(f"Error creating vector store: {e}")
        return None

def summarize_report(documents: List[Document], llm: HuggingFacePipeline, max_length: int, summary_style: str) -> Optional[str]:
    """Summarize the report using the loaded model."""
    try:
        prompt_template = f"""
        Summarize the following text in a {summary_style} manner. Focus on the main points and key details:
        {{text}}
        Summary:
        """

        prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
        chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
        summary = chain.run(documents, max_length=max_length)
        return summary

    except Exception as e:
        logger.error(f"Error summarizing report: {e}")
        return None

def main():
    st.title("Report Summarizer")

    model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
    summary_style = st.sidebar.selectbox("Summary style", options=["clear and concise", "formal", "informal", "bullet points"])

    uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")

    llm = load_llm(model_option, 1024)  # Load the model with a default max_length
    if not llm:
        st.error(f"Failed to load the model {model_option}. Please try another model.")
        return

    embeddings = load_embeddings(EMBEDDING_MODEL)
    if not embeddings:
        st.error(f"Failed to load embeddings. Please try again later.")
        return

    if uploaded_file:
        with st.spinner("Processing PDF..."):
            documents = process_pdf(uploaded_file)

        if documents:
            with st.spinner("Creating vector store..."):
                db = create_vector_store(documents, embeddings)

            if db and st.button("Summarize"):
                # Calculate max_length based on input text
                input_length = sum([len(doc.page_content.split()) for doc in documents])
                max_length = int(input_length * MAX_LENGTH_FRACTION)

                # Reload the model with the calculated max_length
                llm = load_llm(model_option, max_length)

                with st.spinner(f"Generating summary using {model_option}..."):
                    summary = summarize_report(documents, llm, max_length, summary_style)

                    if summary:
                        st.subheader("Summary:")
                        st.write(summary)
                    else:
                        st.warning("Failed to generate summary. Please try again.")

if __name__ == "__main__":
    main()