Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ from langchain.chains.summarize import load_summarize_chain
|
|
11 |
from langchain.schema import Document
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
-
from transformers import pipeline
|
15 |
|
16 |
# Set up logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
@@ -19,11 +19,11 @@ logger = logging.getLogger(__name__)
|
|
19 |
|
20 |
# Constants
|
21 |
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
22 |
-
DEFAULT_MODEL = "
|
23 |
|
24 |
# Check for GPU
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
-
|
27 |
|
28 |
@st.cache_resource
|
29 |
def load_embeddings():
|
@@ -39,7 +39,9 @@ def load_embeddings():
|
|
39 |
def load_llm(model_name):
|
40 |
"""Load and cache the language model."""
|
41 |
try:
|
42 |
-
|
|
|
|
|
43 |
return HuggingFacePipeline(pipeline=pipe)
|
44 |
except Exception as e:
|
45 |
logger.error(f"Failed to load LLM: {e}")
|
@@ -55,13 +57,7 @@ def process_pdf(file) -> List[Document]:
|
|
55 |
|
56 |
loader = PyPDFLoader(file_path=temp_file_path)
|
57 |
pages = loader.load()
|
58 |
-
|
59 |
-
# Check for empty documents
|
60 |
-
if not pages:
|
61 |
-
st.warning("No text extracted from the PDF. Please ensure it's a valid PDF file.")
|
62 |
-
return []
|
63 |
-
|
64 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=200)
|
65 |
documents = text_splitter.split_documents(pages)
|
66 |
return documents
|
67 |
except Exception as e:
|
@@ -82,30 +78,14 @@ def summarize_report(documents: List[Document], llm) -> str:
|
|
82 |
"""Summarize the report using the loaded model."""
|
83 |
try:
|
84 |
prompt_template = """
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
- Use # for main headers and ## for subheaders.
|
91 |
-
- Use **text** for important terms or concepts.
|
92 |
-
- Provide a brief introduction, followed by the main points, and a concluding summary if applicable.
|
93 |
-
- Ensure the summary is easy to read and understand, avoiding unnecessary jargon.
|
94 |
-
*Example Summary Format:*
|
95 |
-
# Overview
|
96 |
-
*Document Title:* Technical Analysis Report
|
97 |
-
*Summary:*
|
98 |
-
The report provides an in-depth analysis of the recent technical advancements in AI. It covers key areas such as ...
|
99 |
-
# Key Findings
|
100 |
-
- *Finding 1:* Description of finding 1.
|
101 |
-
- *Finding 2:* Description of finding 2.
|
102 |
-
# Conclusion
|
103 |
-
The analysis highlights the significant advancements and future directions for AI technology.
|
104 |
-
*Your Response:* [/INST]</s> {input}
|
105 |
-
Context: {context}
|
106 |
"""
|
107 |
|
108 |
-
prompt = PromptTemplate
|
109 |
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
|
110 |
summary = chain.run(documents)
|
111 |
return summary
|
@@ -118,14 +98,18 @@ def summarize_report(documents: List[Document], llm) -> str:
|
|
118 |
def main():
|
119 |
st.title("Report Summarizer")
|
120 |
|
121 |
-
model_option = st.sidebar.
|
122 |
|
123 |
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
|
124 |
|
125 |
llm = load_llm(model_option)
|
126 |
-
|
|
|
|
|
127 |
|
128 |
-
|
|
|
|
|
129 |
return
|
130 |
|
131 |
if uploaded_file:
|
@@ -137,12 +121,12 @@ def main():
|
|
137 |
db = create_vector_store(documents, embeddings)
|
138 |
|
139 |
if db and st.button("Summarize"):
|
140 |
-
with st.spinner(f"Generating
|
141 |
summary = summarize_report(documents, llm)
|
142 |
|
143 |
if summary:
|
144 |
-
st.subheader("
|
145 |
-
st.
|
146 |
else:
|
147 |
st.warning("Failed to generate summary. Please try again.")
|
148 |
|
|
|
11 |
from langchain.schema import Document
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
15 |
|
16 |
# Set up logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
|
|
19 |
|
20 |
# Constants
|
21 |
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
22 |
+
DEFAULT_MODEL = "distilgpt2" # A smaller model that's more likely to work in Spaces
|
23 |
|
24 |
# Check for GPU
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
+
st.sidebar.write(f"Using device: {device}")
|
27 |
|
28 |
@st.cache_resource
|
29 |
def load_embeddings():
|
|
|
39 |
def load_llm(model_name):
|
40 |
"""Load and cache the language model."""
|
41 |
try:
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
44 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_length=512)
|
45 |
return HuggingFacePipeline(pipeline=pipe)
|
46 |
except Exception as e:
|
47 |
logger.error(f"Failed to load LLM: {e}")
|
|
|
57 |
|
58 |
loader = PyPDFLoader(file_path=temp_file_path)
|
59 |
pages = loader.load()
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
documents = text_splitter.split_documents(pages)
|
62 |
return documents
|
63 |
except Exception as e:
|
|
|
78 |
"""Summarize the report using the loaded model."""
|
79 |
try:
|
80 |
prompt_template = """
|
81 |
+
Summarize the following text in a clear and concise manner:
|
82 |
+
|
83 |
+
{text}
|
84 |
+
|
85 |
+
Summary:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
"""
|
87 |
|
88 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
|
89 |
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
|
90 |
summary = chain.run(documents)
|
91 |
return summary
|
|
|
98 |
def main():
|
99 |
st.title("Report Summarizer")
|
100 |
|
101 |
+
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
|
102 |
|
103 |
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
|
104 |
|
105 |
llm = load_llm(model_option)
|
106 |
+
if not llm:
|
107 |
+
st.error(f"Failed to load the model {model_option}. Please try another model.")
|
108 |
+
return
|
109 |
|
110 |
+
embeddings = load_embeddings()
|
111 |
+
if not embeddings:
|
112 |
+
st.error("Failed to load embeddings. Please try again later.")
|
113 |
return
|
114 |
|
115 |
if uploaded_file:
|
|
|
121 |
db = create_vector_store(documents, embeddings)
|
122 |
|
123 |
if db and st.button("Summarize"):
|
124 |
+
with st.spinner(f"Generating summary using {model_option}..."):
|
125 |
summary = summarize_report(documents, llm)
|
126 |
|
127 |
if summary:
|
128 |
+
st.subheader("Summary:")
|
129 |
+
st.write(summary)
|
130 |
else:
|
131 |
st.warning("Failed to generate summary. Please try again.")
|
132 |
|