Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,8 @@ logger = logging.getLogger(__name__)
|
|
19 |
|
20 |
# Constants
|
21 |
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
22 |
-
DEFAULT_MODEL = "distilgpt2"
|
|
|
23 |
|
24 |
# Check for GPU
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -36,12 +37,12 @@ def load_embeddings():
|
|
36 |
return None
|
37 |
|
38 |
@st.cache_resource
|
39 |
-
def load_llm(model_name):
|
40 |
"""Load and cache the language model."""
|
41 |
try:
|
42 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
44 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_length=
|
45 |
return HuggingFacePipeline(pipeline=pipe)
|
46 |
except Exception as e:
|
47 |
logger.error(f"Failed to load LLM: {e}")
|
@@ -78,7 +79,7 @@ def summarize_report(documents: List[Document], llm) -> str:
|
|
78 |
"""Summarize the report using the loaded model."""
|
79 |
try:
|
80 |
prompt_template = """
|
81 |
-
Summarize the following text in a clear and concise manner:
|
82 |
|
83 |
{text}
|
84 |
|
@@ -99,10 +100,11 @@ def main():
|
|
99 |
st.title("Report Summarizer")
|
100 |
|
101 |
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
|
|
|
102 |
|
103 |
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
|
104 |
|
105 |
-
llm = load_llm(model_option)
|
106 |
if not llm:
|
107 |
st.error(f"Failed to load the model {model_option}. Please try another model.")
|
108 |
return
|
|
|
19 |
|
20 |
# Constants
|
21 |
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
22 |
+
DEFAULT_MODEL = "distilgpt2"
|
23 |
+
DEFAULT_MAX_LENGTH = 1024 # Increased default max length
|
24 |
|
25 |
# Check for GPU
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
37 |
return None
|
38 |
|
39 |
@st.cache_resource
|
40 |
+
def load_llm(model_name, max_length):
|
41 |
"""Load and cache the language model."""
|
42 |
try:
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
45 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_length=max_length)
|
46 |
return HuggingFacePipeline(pipeline=pipe)
|
47 |
except Exception as e:
|
48 |
logger.error(f"Failed to load LLM: {e}")
|
|
|
79 |
"""Summarize the report using the loaded model."""
|
80 |
try:
|
81 |
prompt_template = """
|
82 |
+
Summarize the following text in a clear and concise manner. Focus on the main points and key details:
|
83 |
|
84 |
{text}
|
85 |
|
|
|
100 |
st.title("Report Summarizer")
|
101 |
|
102 |
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
|
103 |
+
max_length = st.sidebar.slider("Max summary length", min_value=256, max_value=2048, value=DEFAULT_MAX_LENGTH, step=128)
|
104 |
|
105 |
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
|
106 |
|
107 |
+
llm = load_llm(model_option, max_length)
|
108 |
if not llm:
|
109 |
st.error(f"Failed to load the model {model_option}. Please try another model.")
|
110 |
return
|