Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import tempfile
|
3 |
import logging
|
4 |
-
from typing import List
|
5 |
import torch
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
@@ -20,25 +20,24 @@ logger = logging.getLogger(__name__)
|
|
20 |
# Constants
|
21 |
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
22 |
DEFAULT_MODEL = "distilgpt2"
|
23 |
-
|
24 |
|
25 |
# Check for GPU
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
st.sidebar.write(f"Using device: {device}")
|
28 |
|
29 |
-
@st.
|
30 |
-
def load_embeddings():
|
31 |
-
"""Load
|
32 |
try:
|
33 |
-
return HuggingFaceEmbeddings(model_name=
|
34 |
except Exception as e:
|
35 |
logger.error(f"Failed to load embeddings: {e}")
|
36 |
-
st.error("Failed to load the embedding model. Please try again later.")
|
37 |
return None
|
38 |
|
39 |
-
@st.
|
40 |
-
def load_llm(model_name, max_length):
|
41 |
-
"""Load
|
42 |
try:
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
@@ -46,10 +45,9 @@ def load_llm(model_name, max_length):
|
|
46 |
return HuggingFacePipeline(pipeline=pipe)
|
47 |
except Exception as e:
|
48 |
logger.error(f"Failed to load LLM: {e}")
|
49 |
-
st.error(f"Failed to load the model {model_name}. Please try another model or check your internet connection.")
|
50 |
return None
|
51 |
|
52 |
-
def process_pdf(file) -> List[Document]:
|
53 |
"""Process the uploaded PDF file."""
|
54 |
try:
|
55 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
@@ -63,55 +61,50 @@ def process_pdf(file) -> List[Document]:
|
|
63 |
return documents
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error processing PDF: {e}")
|
66 |
-
|
67 |
-
return []
|
68 |
|
69 |
-
def create_vector_store(documents: List[Document], embeddings):
|
70 |
"""Create the vector store."""
|
71 |
try:
|
72 |
return FAISS.from_documents(documents, embeddings)
|
73 |
except Exception as e:
|
74 |
logger.error(f"Error creating vector store: {e}")
|
75 |
-
st.error("Failed to create the vector store. Please try again.")
|
76 |
return None
|
77 |
|
78 |
-
def summarize_report(documents: List[Document], llm) -> str:
|
79 |
"""Summarize the report using the loaded model."""
|
80 |
try:
|
81 |
-
prompt_template = """
|
82 |
-
Summarize the following text in a
|
83 |
-
|
84 |
-
{text}
|
85 |
-
|
86 |
Summary:
|
87 |
"""
|
88 |
|
89 |
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
|
90 |
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
|
91 |
-
summary = chain.run(documents)
|
92 |
return summary
|
93 |
|
94 |
except Exception as e:
|
95 |
logger.error(f"Error summarizing report: {e}")
|
96 |
-
|
97 |
-
return ""
|
98 |
|
99 |
def main():
|
100 |
st.title("Report Summarizer")
|
101 |
|
102 |
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
|
103 |
-
|
104 |
|
105 |
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
|
106 |
|
107 |
-
llm = load_llm(model_option, max_length
|
108 |
if not llm:
|
109 |
st.error(f"Failed to load the model {model_option}. Please try another model.")
|
110 |
return
|
111 |
|
112 |
-
embeddings = load_embeddings()
|
113 |
if not embeddings:
|
114 |
-
st.error("Failed to load embeddings. Please try again later.")
|
115 |
return
|
116 |
|
117 |
if uploaded_file:
|
@@ -123,8 +116,15 @@ def main():
|
|
123 |
db = create_vector_store(documents, embeddings)
|
124 |
|
125 |
if db and st.button("Summarize"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
with st.spinner(f"Generating summary using {model_option}..."):
|
127 |
-
summary = summarize_report(documents, llm)
|
128 |
|
129 |
if summary:
|
130 |
st.subheader("Summary:")
|
@@ -133,4 +133,4 @@ def main():
|
|
133 |
st.warning("Failed to generate summary. Please try again.")
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import tempfile
|
3 |
import logging
|
4 |
+
from typing import List, Optional
|
5 |
import torch
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
20 |
# Constants
|
21 |
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
22 |
DEFAULT_MODEL = "distilgpt2"
|
23 |
+
MAX_LENGTH_FRACTION = 0.2 # Set max_length to 20% of input length
|
24 |
|
25 |
# Check for GPU
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
st.sidebar.write(f"Using device: {device}")
|
28 |
|
29 |
+
@st.cache_data
|
30 |
+
def load_embeddings(model_name: str) -> Optional[HuggingFaceEmbeddings]:
|
31 |
+
"""Load the embedding model."""
|
32 |
try:
|
33 |
+
return HuggingFaceEmbeddings(model_name=model_name)
|
34 |
except Exception as e:
|
35 |
logger.error(f"Failed to load embeddings: {e}")
|
|
|
36 |
return None
|
37 |
|
38 |
+
@st.cache_data
|
39 |
+
def load_llm(model_name: str, max_length: int) -> Optional[HuggingFacePipeline]:
|
40 |
+
"""Load the language model."""
|
41 |
try:
|
42 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
45 |
return HuggingFacePipeline(pipeline=pipe)
|
46 |
except Exception as e:
|
47 |
logger.error(f"Failed to load LLM: {e}")
|
|
|
48 |
return None
|
49 |
|
50 |
+
def process_pdf(file) -> Optional[List[Document]]:
|
51 |
"""Process the uploaded PDF file."""
|
52 |
try:
|
53 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
|
|
61 |
return documents
|
62 |
except Exception as e:
|
63 |
logger.error(f"Error processing PDF: {e}")
|
64 |
+
return None
|
|
|
65 |
|
66 |
+
def create_vector_store(documents: List[Document], embeddings: HuggingFaceEmbeddings) -> Optional[FAISS]:
|
67 |
"""Create the vector store."""
|
68 |
try:
|
69 |
return FAISS.from_documents(documents, embeddings)
|
70 |
except Exception as e:
|
71 |
logger.error(f"Error creating vector store: {e}")
|
|
|
72 |
return None
|
73 |
|
74 |
+
def summarize_report(documents: List[Document], llm: HuggingFacePipeline, max_length: int, summary_style: str) -> Optional[str]:
|
75 |
"""Summarize the report using the loaded model."""
|
76 |
try:
|
77 |
+
prompt_template = f"""
|
78 |
+
Summarize the following text in a {summary_style} manner. Focus on the main points and key details:
|
79 |
+
{{text}}
|
|
|
|
|
80 |
Summary:
|
81 |
"""
|
82 |
|
83 |
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
|
84 |
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
|
85 |
+
summary = chain.run(documents, max_length=max_length)
|
86 |
return summary
|
87 |
|
88 |
except Exception as e:
|
89 |
logger.error(f"Error summarizing report: {e}")
|
90 |
+
return None
|
|
|
91 |
|
92 |
def main():
|
93 |
st.title("Report Summarizer")
|
94 |
|
95 |
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
|
96 |
+
summary_style = st.sidebar.selectbox("Summary style", options=["clear and concise", "formal", "informal", "bullet points"])
|
97 |
|
98 |
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
|
99 |
|
100 |
+
llm = load_llm(model_option, 1024) # Load the model with a default max_length
|
101 |
if not llm:
|
102 |
st.error(f"Failed to load the model {model_option}. Please try another model.")
|
103 |
return
|
104 |
|
105 |
+
embeddings = load_embeddings(EMBEDDING_MODEL)
|
106 |
if not embeddings:
|
107 |
+
st.error(f"Failed to load embeddings. Please try again later.")
|
108 |
return
|
109 |
|
110 |
if uploaded_file:
|
|
|
116 |
db = create_vector_store(documents, embeddings)
|
117 |
|
118 |
if db and st.button("Summarize"):
|
119 |
+
# Calculate max_length based on input text
|
120 |
+
input_length = sum([len(doc.page_content.split()) for doc in documents])
|
121 |
+
max_length = int(input_length * MAX_LENGTH_FRACTION)
|
122 |
+
|
123 |
+
# Reload the model with the calculated max_length
|
124 |
+
llm = load_llm(model_option, max_length)
|
125 |
+
|
126 |
with st.spinner(f"Generating summary using {model_option}..."):
|
127 |
+
summary = summarize_report(documents, llm, max_length, summary_style)
|
128 |
|
129 |
if summary:
|
130 |
st.subheader("Summary:")
|
|
|
133 |
st.warning("Failed to generate summary. Please try again.")
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
+
main()
|