Spaces:
Runtime error
Runtime error
File size: 11,188 Bytes
a86ebfe 074b087 4f600ec 64547bc 4c1a7b2 074b087 336e489 4c1a7b2 a76f382 a86ebfe 336e489 a76f382 336e489 a86ebfe bc97bc5 9ac4891 bc97bc5 0e521b1 e5f8353 bc97bc5 074b087 0e521b1 b4a66f8 0e521b1 3e92edb 0e521b1 3e92edb 0e521b1 3e92edb 0e521b1 047f2f7 0e521b1 a76f382 0e521b1 a76f382 6cd26ad a76f382 6cd26ad 0e521b1 3e92edb 981853f 3e92edb 8daed9c 3e92edb 074b087 3e92edb 2993324 074b087 3e92edb 074b087 3e92edb 074b087 0567ede 38110be 074b087 38110be fc3e5ca 0e521b1 1c9fb4e fc3e5ca 0e521b1 be5e499 8d37970 998c13e 074b087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import regex as re
import pysentimiento
import geopy
from pysentimiento.preprocessing import preprocess_tweet
from geopy.geocoders import Nominatim
from transformers import pipeline
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021"
pipeline_nlp = pipeline("text-classification", model=model_checkpoint)
import torch
if torch.cuda.is_available():
device = torch.device( "cuda")
print('I will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ"
access_token = "1217853705086799872-Y5zEChpTeKccuLY3XJRXDPPZhNrlba"
access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J"
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)
def preprocess(text):
#text=text.lower()
# remove hyperlinks
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
#Replace &, <, > with &,<,> respectively
text=text.replace(r'&?',r'and')
text=text.replace(r'<',r'<')
text=text.replace(r'>',r'>')
#remove hashtag sign
#text=re.sub(r"#","",text)
#remove mentions
text = re.sub(r"(?:\@)\w+", '', text)
#text=re.sub(r"@","",text)
#remove non ascii chars
text=text.encode("ascii",errors="ignore").decode()
#remove some puncts (except . ! ?)
text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
text=re.sub(r'[!]+','!',text)
text=re.sub(r'[?]+','?',text)
text=re.sub(r'[.]+','.',text)
text=re.sub(r"'","",text)
text=re.sub(r"\(","",text)
text=re.sub(r"\)","",text)
text=" ".join(text.split())
return text
def highlight_survived(s):
return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)
def color_survived(val):
color = 'red' if val=='Sexista' else 'white'
return f'background-color: {color}'
st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
colT1,colT2 = st.columns([2,8])
with colT2:
# st.title('Analisis de comentarios sexistas en Twitter')
st.markdown(""" <style> .font {
font-size:40px ; font-family: 'Cooper Black'; color: #06bf69;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
st.markdown(""" <style> .font1 {
font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;}
</style> """, unsafe_allow_html=True)
st.markdown(""" <style> .font2 {
font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
</style> """, unsafe_allow_html=True)
def analizar_tweets(search_words, number_of_tweets ):
tweets = api.user_timeline(screen_name = search_words, count= number_of_tweets)
tweet_list = [i.text for i in tweets]
text= pd.DataFrame(tweet_list)
text[0] = text[0].apply(preprocess_tweet)
text1=text[0].values
indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True)
input_ids1=indices1["input_ids"]
attention_masks1=indices1["attention_mask"]
prediction_inputs1= torch.tensor(input_ids1)
prediction_masks1 = torch.tensor(attention_masks1)
batch_size = 25
# Create the DataLoader.
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
prediction_sampler1 = SequentialSampler(prediction_data1)
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
#print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions = []
for batch in prediction_dataloader1:
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids1, b_input_mask1 = batch
#Telling the model not to compute or store gradients, saving memory and # speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
logits1 = outputs1[0]
# Move logits and labels to CPU
logits1 = logits1.detach().cpu().numpy()
# Store predictions and true labels
predictions.append(logits1)
#flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
probability = np.amax(logits1,axis=1).flatten()
Tweets =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words]
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
return tabla
def analizar_frase(frase):
#palabra = frase.split()
palabra = [frase]
labels = pipeline_nlp (palabra)
print(labels)
predictions = pipeline_nlp(palabra)
# convierte las predicciones en una lista de diccionarios
data = [{'text': palabra, 'label': prediction['label'], 'score': prediction['score']} for prediction in predictions]
# crea un DataFrame a partir de la lista de diccionarios
df = pd.DataFrame(data)
# muestra el DataFrame
tabla = st.text
return tabla
def tweets_localidad(buscar_localidad):
geolocator = Nominatim(user_agent="nombre_del_usuario")
location = geolocator.geocode(buscar_localidad)
radius = "200km"
tweets = api.search(lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50)
#for tweet in tweets:
# print(tweet.text)
tweet_list = [i.text for i in tweets]
text= pd.DataFrame(tweet_list)
text[0] = text[0].apply(preprocess_tweet)
text1=text[0].values
print(text1)
indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True)
input_ids1=indices1["input_ids"]
attention_masks1=indices1["attention_mask"]
prediction_inputs1= torch.tensor(input_ids1)
prediction_masks1 = torch.tensor(attention_masks1)
batch_size = 25
# Create the DataLoader.
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
prediction_sampler1 = SequentialSampler(prediction_data1)
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
#print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions = []
for batch in prediction_dataloader1:
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids1, b_input_mask1 = batch
#Telling the model not to compute or store gradients, saving memory and # speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
logits1 = outputs1[0]
# Move logits and labels to CPU
logits1 = logits1.detach().cpu().numpy()
# Store predictions and true labels
predictions.append(logits1)
#flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
probability = np.amax(logits1,axis=1).flatten()
Tweets =['Últimos 50 Tweets'+' de '+ buscar_localidad]
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
#df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
#df_filtrado = df[df["Sexista"] == 'Sexista']
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
df_sexista = df[df['Sexista']=="Sexista"]
df_no_sexista = df[df['Probabilidad'] > 0]
sexista = len(df_sexista)
no_sexista = len(df_no_sexista)
# Crear un gráfico de barras
labels = ['Sexista ', ' No sexista']
counts = [sexista, no_sexista]
plt.bar(labels, counts)
plt.xlabel('Categoría')
plt.ylabel('Cantidad de tweets')
plt.title('Cantidad de tweets sexistas y no sexistas')
plt.show()
return df
def run():
with st.form("my_form"):
col,buff1, buff2 = st.columns([2,2,1])
st.write("Escoja una Opción")
search_words = col.text_input("Introduzca el termino, usuario o localidad para analizar y pulse el check correspondiente")
number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10)
termino=st.checkbox('Término')
usuario=st.checkbox('Usuario')
localidad=st.checkbox('Localidad')
submit_button = col.form_submit_button(label='Analizar')
error =False
if submit_button:
# Condición para el caso de que esten dos check seleccionados
if ( termino == False and usuario == False and localidad == False):
st.text('Error no se ha seleccionado ningun check')
error=True
elif ( termino == True and usuario == True and localidad == True):
st.text('Error se han seleccionado varios check')
error=True
if (error == False):
if (termino):
analizar_frase(search_words)
elif (usuario):
analizar_tweets(search_words,number_of_tweets)
elif (localidad):
tweets_localidad(search_words)
run() |