Joshua1808 commited on
Commit
0567ede
1 Parent(s): 3dc9128

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -15
app.py CHANGED
@@ -97,7 +97,7 @@ def run():
97
  submit_button = col.form_submit_button(label='Analizar')
98
  error=False
99
  if submit_button:
100
- date_since = "2020-09-14"
101
  if ( termino == False and usuario == False):
102
  st.text('Error no se ha seleccionado ningun check')
103
  error=True
@@ -108,22 +108,15 @@ def run():
108
  if (error == False):
109
  if (termino):
110
  new_search = search_words + " -filter:retweets"
111
- tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",since=date_since).items(number_of_tweets)
112
  elif (usuario):
113
  tweets = api.user_timeline(screen_name = search_words,count=number_of_tweets)
114
 
115
  tweet_list = [i.text for i in tweets]
116
- #tweet_list = [strip_undesired_chars(i.text) for i in tweets]
117
  text= pd.DataFrame(tweet_list)
118
- #text[0] = text[0].apply(preprocess)
119
- #text[0] = text[0].apply(preprocess_tweet)
120
  text1=text[0].values
121
- indices1=tokenizer.batch_encode_plus(text1.tolist(),
122
- max_length=128,
123
- add_special_tokens=True,
124
- return_attention_mask=True,
125
- pad_to_max_length=True,
126
- truncation=True)
127
  input_ids1=indices1["input_ids"]
128
  attention_masks1=indices1["attention_mask"]
129
  prediction_inputs1= torch.tensor(input_ids1)
@@ -135,16 +128,16 @@ def run():
135
  prediction_sampler1 = SequentialSampler(prediction_data1)
136
  prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
137
  print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
138
- # Put model in evaluation mode
139
  model.eval()
140
- # Tracking variables
141
  predictions = []
142
  # Predict
143
  for batch in prediction_dataloader1:
144
  batch = tuple(t.to(device) for t in batch)
145
- # Unpack the inputs from our dataloader
146
  b_input_ids1, b_input_mask1 = batch
147
- # Telling the model not to compute or store gradients, saving memory and # speeding up prediction
148
  with torch.no_grad():
149
  # Forward pass, calculate logit predictions
150
  outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
 
97
  submit_button = col.form_submit_button(label='Analizar')
98
  error=False
99
  if submit_button:
100
+ # Condici贸n para el caso de que esten dos check seleccionados
101
  if ( termino == False and usuario == False):
102
  st.text('Error no se ha seleccionado ningun check')
103
  error=True
 
108
  if (error == False):
109
  if (termino):
110
  new_search = search_words + " -filter:retweets"
111
+ tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es").items(number_of_tweets)
112
  elif (usuario):
113
  tweets = api.user_timeline(screen_name = search_words,count=number_of_tweets)
114
 
115
  tweet_list = [i.text for i in tweets]
 
116
  text= pd.DataFrame(tweet_list)
117
+ text[0] = text[0].apply(preprocess_tweet)
 
118
  text1=text[0].values
119
+ indices1=tokenizer.batch_encode_plus(text1.tolist(),max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True)
 
 
 
 
 
120
  input_ids1=indices1["input_ids"]
121
  attention_masks1=indices1["attention_mask"]
122
  prediction_inputs1= torch.tensor(input_ids1)
 
128
  prediction_sampler1 = SequentialSampler(prediction_data1)
129
  prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
130
  print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
131
+ # Pone el modelo en modo evaluaci贸n
132
  model.eval()
133
+ # Variables de Seguimiento
134
  predictions = []
135
  # Predict
136
  for batch in prediction_dataloader1:
137
  batch = tuple(t.to(device) for t in batch)
138
+ # Descomprimir las entradas de nuestro cargador de datos
139
  b_input_ids1, b_input_mask1 = batch
140
+ # Decirle al modelo que no calcule ni almacene gradientes, ahorrando memoria y # acelerando la predicci贸n.
141
  with torch.no_grad():
142
  # Forward pass, calculate logit predictions
143
  outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)