Spaces:
Runtime error
Runtime error
Commit
·
3e92edb
1
Parent(s):
2993324
Update app.py
Browse files
app.py
CHANGED
@@ -133,13 +133,13 @@ def analizar_tweets(search_words, number_of_tweets ):
|
|
133 |
|
134 |
probability = np.amax(logits1,axis=1).flatten()
|
135 |
Tweets =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words]
|
136 |
-
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , '
|
137 |
|
138 |
-
df['
|
139 |
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
140 |
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
141 |
|
142 |
-
tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['
|
143 |
|
144 |
return tabla
|
145 |
|
@@ -199,17 +199,95 @@ def analizar_frase(frase):
|
|
199 |
|
200 |
return tabla
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
def run():
|
204 |
with st.form("my_form"):
|
205 |
col,buff1, buff2 = st.columns([2,2,1])
|
206 |
st.write("Escoja una Opción")
|
207 |
-
search_words = col.text_input("Introduzca el termino o
|
208 |
number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10)
|
209 |
termino=st.checkbox('Término')
|
210 |
usuario=st.checkbox('Usuario')
|
|
|
211 |
submit_button = col.form_submit_button(label='Analizar')
|
212 |
-
error=False
|
|
|
|
|
213 |
if submit_button:
|
214 |
# Condición para el caso de que esten dos check seleccionados
|
215 |
if ( termino == False and usuario == False):
|
@@ -225,6 +303,7 @@ def run():
|
|
225 |
|
226 |
elif (usuario):
|
227 |
analizar_tweets(search_words,number_of_tweets)
|
228 |
-
|
|
|
229 |
|
230 |
run()
|
|
|
133 |
|
134 |
probability = np.amax(logits1,axis=1).flatten()
|
135 |
Tweets =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words]
|
136 |
+
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
|
137 |
|
138 |
+
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
|
139 |
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
140 |
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
141 |
|
142 |
+
tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
|
143 |
|
144 |
return tabla
|
145 |
|
|
|
199 |
|
200 |
return tabla
|
201 |
|
202 |
+
def tweets_localidad(buscar_localidad):
|
203 |
+
location = geolocator.geocode(buscar_localidad)
|
204 |
+
radius = "200km"
|
205 |
+
tweets = api.search(lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50)
|
206 |
+
#for tweet in tweets:
|
207 |
+
# print(tweet.text)
|
208 |
+
tweet_list = [i.text for i in tweets]
|
209 |
+
text= pd.DataFrame(tweet_list)
|
210 |
+
text[0] = text[0].apply(preprocess_tweet)
|
211 |
+
text1=text[0].values
|
212 |
+
print(text1)
|
213 |
+
indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True)
|
214 |
+
input_ids1=indices1["input_ids"]
|
215 |
+
attention_masks1=indices1["attention_mask"]
|
216 |
+
prediction_inputs1= torch.tensor(input_ids1)
|
217 |
+
prediction_masks1 = torch.tensor(attention_masks1)
|
218 |
+
batch_size = 25
|
219 |
+
# Create the DataLoader.
|
220 |
+
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
|
221 |
+
prediction_sampler1 = SequentialSampler(prediction_data1)
|
222 |
+
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
|
223 |
+
#print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
|
224 |
+
# Put model in evaluation mode
|
225 |
+
model.eval()
|
226 |
+
# Tracking variables
|
227 |
+
predictions = []
|
228 |
+
for batch in prediction_dataloader1:
|
229 |
+
batch = tuple(t.to(device) for t in batch)
|
230 |
+
# Unpack the inputs from our dataloader
|
231 |
+
b_input_ids1, b_input_mask1 = batch
|
232 |
+
|
233 |
+
#Telling the model not to compute or store gradients, saving memory and # speeding up prediction
|
234 |
+
with torch.no_grad():
|
235 |
+
# Forward pass, calculate logit predictions
|
236 |
+
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
|
237 |
+
logits1 = outputs1[0]
|
238 |
+
# Move logits and labels to CPU
|
239 |
+
logits1 = logits1.detach().cpu().numpy()
|
240 |
+
# Store predictions and true labels
|
241 |
+
predictions.append(logits1)
|
242 |
+
|
243 |
+
#flat_predictions = [item for sublist in predictions for item in sublist]
|
244 |
+
flat_predictions = [item for sublist in predictions for item in sublist]
|
245 |
+
|
246 |
+
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()
|
247 |
+
|
248 |
+
probability = np.amax(logits1,axis=1).flatten()
|
249 |
+
Tweets =['Últimos 50 Tweets'+' de '+ buscar_localidad]
|
250 |
+
df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad'])
|
251 |
+
|
252 |
+
df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista')
|
253 |
+
#df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
254 |
+
#df_filtrado = df[df["Sexista"] == 'Sexista']
|
255 |
+
#df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x))
|
256 |
+
|
257 |
+
tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
|
258 |
+
|
259 |
+
df_sexista = df[df['Sexista']=="Sexista"]
|
260 |
+
df_no_sexista = df[df['Probabilidad'] > 0]
|
261 |
+
sexista = len(df_sexista)
|
262 |
+
no_sexista = len(df_no_sexista)
|
263 |
+
|
264 |
+
# Crear un gráfico de barras
|
265 |
+
labels = ['Sexista ', ' No sexista']
|
266 |
+
counts = [sexista, no_sexista]
|
267 |
+
plt.bar(labels, counts)
|
268 |
+
plt.xlabel('Categoría')
|
269 |
+
plt.ylabel('Cantidad de tweets')
|
270 |
+
plt.title('Cantidad de tweets sexistas y no sexistas')
|
271 |
+
plt.show()
|
272 |
+
|
273 |
+
return df
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
def run():
|
279 |
with st.form("my_form"):
|
280 |
col,buff1, buff2 = st.columns([2,2,1])
|
281 |
st.write("Escoja una Opción")
|
282 |
+
search_words = col.text_input("Introduzca el termino, usuario o localidad para analizar y pulse el check correspondiente")
|
283 |
number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10)
|
284 |
termino=st.checkbox('Término')
|
285 |
usuario=st.checkbox('Usuario')
|
286 |
+
localidad=st.checkbox('Localidad')
|
287 |
submit_button = col.form_submit_button(label='Analizar')
|
288 |
+
error =False
|
289 |
+
|
290 |
+
|
291 |
if submit_button:
|
292 |
# Condición para el caso de que esten dos check seleccionados
|
293 |
if ( termino == False and usuario == False):
|
|
|
303 |
|
304 |
elif (usuario):
|
305 |
analizar_tweets(search_words,number_of_tweets)
|
306 |
+
elif (localidad):
|
307 |
+
tweets_localidad(search_words)
|
308 |
|
309 |
run()
|