File size: 11,168 Bytes
10672ab
 
7f19084
10672ab
7208469
10672ab
7208469
10672ab
 
 
 
7208469
10672ab
 
 
 
 
7f19084
10672ab
 
 
 
846d7a6
 
 
 
 
 
 
 
 
 
 
7208469
 
 
10672ab
 
 
 
 
 
 
 
 
 
 
 
 
7f19084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7208469
7f19084
 
7208469
7f19084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7208469
10672ab
846d7a6
 
10672ab
 
 
 
7208469
10672ab
 
 
 
 
 
846d7a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10672ab
 
 
 
 
 
 
7208469
7f19084
 
 
 
 
 
 
 
 
 
 
7208469
10672ab
 
7208469
 
 
7f19084
 
10672ab
 
 
 
 
7208469
10672ab
 
 
 
 
 
 
 
 
 
7208469
10672ab
 
 
 
 
 
 
 
7208469
10672ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be906ef
10672ab
 
be906ef
10672ab
 
be906ef
10672ab
 
be906ef
10672ab
 
be906ef
10672ab
 
be906ef
10672ab
 
be906ef
7f19084
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import os
import json
import requests
import pdfplumber
import chromadb
import re
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah-1", layout="centered")

# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()


# ----------------- ChromaDB Persistent Directory -----------------
CHROMA_DB_DIR = "/mnt/data/chroma_db" 
os.makedirs(CHROMA_DB_DIR, exist_ok=True)

# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
    st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None


# ----------------- Text Cleaning Functions -----------------
def clean_extracted_text(text):
    """
    Cleans extracted PDF text by removing excessive line breaks, fixing spacing issues, and resolving OCR artifacts.
    """
    text = re.sub(r'\n+', '\n', text)  # Remove excessive newlines
    text = re.sub(r'\s{2,}', ' ', text)  # Remove extra spaces
    text = re.sub(r'(\w)-\n(\w)', r'\1\2', text)  # Fix hyphenated words split by a newline
    return text.strip()

def extract_title_manually(text):
    """
    Attempts to find the title by checking the first few lines.
    - Titles are usually long enough (more than 5 words).
    - Ignores common header text like "Abstract", "Introduction".
    """
    lines = text.split("\n")
    ignore_keywords = ["abstract", "introduction", "keywords", "contents", "table", "figure"]
    
    for line in lines[:5]:  # Check only the first 5 lines
        clean_line = line.strip()
        if len(clean_line.split()) > 5 and not any(word.lower() in clean_line.lower() for word in ignore_keywords):
            return clean_line  # Return first valid title
    return "Unknown"

# ----------------- Metadata Extraction -----------------
# ----------------- Metadata Extraction -----------------
def extract_metadata(pdf_path):
    """Extracts metadata using simple heuristics without LLM."""
    
    with pdfplumber.open(pdf_path) as pdf:
        if not pdf.pages:
            return {
                "Title": "Unknown",
                "Author": "Unknown",
                "Emails": "No emails found",
                "Affiliations": "No affiliations found"
            }

        # Extract text from the first page
        first_page_text = pdf.pages[0].extract_text() or "No text found."
        cleaned_text = clean_extracted_text(first_page_text)

        # Extract Title
        pre_extracted_title = extract_title_manually(cleaned_text)

        # Extract Authors (Names typically appear before affiliations)
        author_pattern = re.compile(r"([\w\-\s]+,\s?)+[\w\-\s]+")
        authors = "Unknown"
        for line in cleaned_text.split("\n"):
            match = author_pattern.search(line)
            if match:
                authors = match.group(0)
                break

        # Extract Emails
        email_pattern = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
        emails = ", ".join(email_pattern.findall(cleaned_text)) or "No emails found"

        # Extract Affiliations (usually below author names)
        affiliations = "Unknown"
        for i, line in enumerate(cleaned_text.split("\n")):
            if "@" in line:  # Email appears before affiliations
                affiliations = cleaned_text.split("\n")[i + 1] if i + 1 < len(cleaned_text.split("\n")) else "Unknown"
                break

        return {
            "Title": pre_extracted_title,
            "Author": authors,
            "Emails": emails,
            "Affiliations": affiliations
        }


# ----------------- Step 1: Choose PDF Source -----------------
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
    if uploaded_file:
        st.session_state.pdf_path = "/mnt/data/temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:")
    if pdf_url and not st.session_state.pdf_loaded:
        with st.spinner("πŸ”„ Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "/mnt/data/temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")


# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
    with st.spinner("πŸ”„ Processing document... Please wait."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.json(docs[0].metadata)

        # Extract metadata
        metadata = extract_metadata(st.session_state.pdf_path)

        # Display extracted-metadata
        if isinstance(metadata, dict):
            st.subheader("πŸ“„ Extracted Document Metadata")
            st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
            st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
            st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
            st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
        else:
            st.error("Metadata extraction failed.")

        # Embedding Model
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})

        # Convert metadata into a retrievable chunk
        metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}


        # Prevent unnecessary re-chunking
        if not st.session_state.chunked:
            text_splitter = SemanticChunker(embedding_model)
            document_chunks = text_splitter.split_documents(docs)
            document_chunks.insert(0, metadata_doc)  # Insert metadata as a retrievable document
            st.session_state.processed_chunks = document_chunks
            st.session_state.chunked = True

        st.session_state.pdf_loaded = True
        st.success("βœ… Document processed and chunked successfully!")

# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
    with st.spinner("πŸ”„ Initializing Vector Store..."):
        st.session_state.vector_store = Chroma(
            persist_directory=CHROMA_DB_DIR,  # <-- Ensures persistence
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model
        )
        st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
        st.session_state.vector_created = True
        st.success("βœ… Vector store initialized successfully!")


# ----------------- Query Input -----------------
query = st.text_input("πŸ” Ask a question about the document:")

if query:
    with st.spinner("πŸ”„ Retrieving relevant context..."):
        retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
        retrieved_docs = retriever.invoke(query)
        context = [d.page_content for d in retrieved_docs]
        st.success("βœ… Context retrieved successfully!")

    # ----------------- Run Individual Chains Explicitly -----------------
    context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
    relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
    relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
    response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")

    response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
    relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
    contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
    final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})

    # ----------------- Display All Outputs -----------------
    st.markdown("### Context Relevancy Evaluation")
    st.json(response_crisis["relevancy_response"])

    st.markdown("### Picked Relevant Contexts")
    st.json(relevant_response["context_number"])

    st.markdown("### Extracted Relevant Contexts")
    st.json(contexts["relevant_contexts"])

    st.subheader("context_relevancy_evaluation_chain Statement")
    st.json(final_response["relevancy_response"])

    st.subheader("pick_relevant_context_chain Statement")
    st.json(final_response["context_number"])

    st.subheader("relevant_contexts_chain Statement")
    st.json(final_response["relevant_contexts"])

    st.subheader("RAG Response Statement")
    st.json(final_response["final_response"])