File size: 11,168 Bytes
10672ab 7f19084 10672ab 7208469 10672ab 7208469 10672ab 7208469 10672ab 7f19084 10672ab 846d7a6 7208469 10672ab 7f19084 7208469 7f19084 7208469 7f19084 7208469 10672ab 846d7a6 10672ab 7208469 10672ab 846d7a6 10672ab 7208469 7f19084 7208469 10672ab 7208469 7f19084 10672ab 7208469 10672ab 7208469 10672ab 7208469 10672ab be906ef 10672ab be906ef 10672ab be906ef 10672ab be906ef 10672ab be906ef 10672ab be906ef 10672ab be906ef 7f19084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import streamlit as st
import os
import json
import requests
import pdfplumber
import chromadb
import re
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah-1", layout="centered")
# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()
# ----------------- ChromaDB Persistent Directory -----------------
CHROMA_DB_DIR = "/mnt/data/chroma_db"
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# ----------------- Text Cleaning Functions -----------------
def clean_extracted_text(text):
"""
Cleans extracted PDF text by removing excessive line breaks, fixing spacing issues, and resolving OCR artifacts.
"""
text = re.sub(r'\n+', '\n', text) # Remove excessive newlines
text = re.sub(r'\s{2,}', ' ', text) # Remove extra spaces
text = re.sub(r'(\w)-\n(\w)', r'\1\2', text) # Fix hyphenated words split by a newline
return text.strip()
def extract_title_manually(text):
"""
Attempts to find the title by checking the first few lines.
- Titles are usually long enough (more than 5 words).
- Ignores common header text like "Abstract", "Introduction".
"""
lines = text.split("\n")
ignore_keywords = ["abstract", "introduction", "keywords", "contents", "table", "figure"]
for line in lines[:5]: # Check only the first 5 lines
clean_line = line.strip()
if len(clean_line.split()) > 5 and not any(word.lower() in clean_line.lower() for word in ignore_keywords):
return clean_line # Return first valid title
return "Unknown"
# ----------------- Metadata Extraction -----------------
# ----------------- Metadata Extraction -----------------
def extract_metadata(pdf_path):
"""Extracts metadata using simple heuristics without LLM."""
with pdfplumber.open(pdf_path) as pdf:
if not pdf.pages:
return {
"Title": "Unknown",
"Author": "Unknown",
"Emails": "No emails found",
"Affiliations": "No affiliations found"
}
# Extract text from the first page
first_page_text = pdf.pages[0].extract_text() or "No text found."
cleaned_text = clean_extracted_text(first_page_text)
# Extract Title
pre_extracted_title = extract_title_manually(cleaned_text)
# Extract Authors (Names typically appear before affiliations)
author_pattern = re.compile(r"([\w\-\s]+,\s?)+[\w\-\s]+")
authors = "Unknown"
for line in cleaned_text.split("\n"):
match = author_pattern.search(line)
if match:
authors = match.group(0)
break
# Extract Emails
email_pattern = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
emails = ", ".join(email_pattern.findall(cleaned_text)) or "No emails found"
# Extract Affiliations (usually below author names)
affiliations = "Unknown"
for i, line in enumerate(cleaned_text.split("\n")):
if "@" in line: # Email appears before affiliations
affiliations = cleaned_text.split("\n")[i + 1] if i + 1 < len(cleaned_text.split("\n")) else "Unknown"
break
return {
"Title": pre_extracted_title,
"Author": authors,
"Emails": emails,
"Affiliations": affiliations
}
# ----------------- Step 1: Choose PDF Source -----------------
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file:
st.session_state.pdf_path = "/mnt/data/temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_loaded:
with st.spinner("π Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "/mnt/data/temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
with st.spinner("π Processing document... Please wait."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.json(docs[0].metadata)
# Extract metadata
metadata = extract_metadata(st.session_state.pdf_path)
# Display extracted-metadata
if isinstance(metadata, dict):
st.subheader("π Extracted Document Metadata")
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
else:
st.error("Metadata extraction failed.")
# Embedding Model
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
# Convert metadata into a retrievable chunk
metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
# Prevent unnecessary re-chunking
if not st.session_state.chunked:
text_splitter = SemanticChunker(embedding_model)
document_chunks = text_splitter.split_documents(docs)
document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
st.session_state.processed_chunks = document_chunks
st.session_state.chunked = True
st.session_state.pdf_loaded = True
st.success("β
Document processed and chunked successfully!")
# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
with st.spinner("π Initializing Vector Store..."):
st.session_state.vector_store = Chroma(
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model
)
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
st.session_state.vector_created = True
st.success("β
Vector store initialized successfully!")
# ----------------- Query Input -----------------
query = st.text_input("π Ask a question about the document:")
if query:
with st.spinner("π Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retrieved_docs = retriever.invoke(query)
context = [d.page_content for d in retrieved_docs]
st.success("β
Context retrieved successfully!")
# ----------------- Run Individual Chains Explicitly -----------------
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
# ----------------- Display All Outputs -----------------
st.markdown("### Context Relevancy Evaluation")
st.json(response_crisis["relevancy_response"])
st.markdown("### Picked Relevant Contexts")
st.json(relevant_response["context_number"])
st.markdown("### Extracted Relevant Contexts")
st.json(contexts["relevant_contexts"])
st.subheader("context_relevancy_evaluation_chain Statement")
st.json(final_response["relevancy_response"])
st.subheader("pick_relevant_context_chain Statement")
st.json(final_response["context_number"])
st.subheader("relevant_contexts_chain Statement")
st.json(final_response["relevant_contexts"])
st.subheader("RAG Response Statement")
st.json(final_response["final_response"]) |