DrishtiSharma commited on
Commit
10672ab
Β·
verified Β·
1 Parent(s): 8567c93

Create title_issue.py

Browse files
Files changed (1) hide show
  1. lab/title_issue.py +154 -0
lab/title_issue.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import requests
4
+ import chromadb
5
+ from langchain.document_loaders import PDFPlumberLoader
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain_experimental.text_splitter import SemanticChunker
8
+ from langchain_chroma import Chroma
9
+ from langchain.chains import LLMChain, SequentialChain
10
+ from langchain.prompts import PromptTemplate
11
+ from langchain_groq import ChatGroq
12
+ from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
13
+
14
+ # ----------------- Streamlit UI Setup -----------------
15
+ st.set_page_config(page_title="Blah", layout="centered")
16
+ st.title("Blah-1")
17
+
18
+ # ----------------- API Keys -----------------
19
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
20
+
21
+ # ----------------- Clear ChromaDB Cache -----------------
22
+ chromadb.api.client.SharedSystemClient.clear_system_cache()
23
+
24
+ # ----------------- Initialize Session State -----------------
25
+ if "pdf_loaded" not in st.session_state:
26
+ st.session_state.pdf_loaded = False
27
+ if "chunked" not in st.session_state:
28
+ st.session_state.chunked = False
29
+ if "vector_created" not in st.session_state:
30
+ st.session_state.vector_created = False
31
+ if "processed_chunks" not in st.session_state:
32
+ st.session_state.processed_chunks = None
33
+ if "vector_store" not in st.session_state:
34
+ st.session_state.vector_store = None
35
+
36
+ # ----------------- Load Models -----------------
37
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
38
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
39
+
40
+ # Enable verbose logging for debugging
41
+ llm_judge.verbose = True
42
+ rag_llm.verbose = True
43
+
44
+ # ----------------- PDF Selection -----------------
45
+ #st.subheader("PDF Selection")
46
+ pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
47
+
48
+ if pdf_source == "Upload a PDF file":
49
+ uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
50
+ if uploaded_file:
51
+ st.session_state.pdf_path = "temp.pdf"
52
+ with open(st.session_state.pdf_path, "wb") as f:
53
+ f.write(uploaded_file.getbuffer())
54
+ st.session_state.pdf_loaded = False
55
+ st.session_state.chunked = False
56
+ st.session_state.vector_created = False
57
+
58
+ elif pdf_source == "Enter a PDF URL":
59
+ pdf_url = st.text_input("Enter PDF URL:")
60
+ if pdf_url and not st.session_state.pdf_loaded:
61
+ with st.spinner("πŸ”„ Downloading PDF..."):
62
+ try:
63
+ response = requests.get(pdf_url)
64
+ if response.status_code == 200:
65
+ st.session_state.pdf_path = "temp.pdf"
66
+ with open(st.session_state.pdf_path, "wb") as f:
67
+ f.write(response.content)
68
+ st.session_state.pdf_loaded = False
69
+ st.session_state.chunked = False
70
+ st.session_state.vector_created = False
71
+ st.success("βœ… PDF Downloaded Successfully!")
72
+ else:
73
+ st.error("❌ Failed to download PDF. Check the URL.")
74
+ except Exception as e:
75
+ st.error(f"Error downloading PDF: {e}")
76
+
77
+ # ----------------- Process PDF -----------------
78
+ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
79
+ with st.spinner("πŸ”„ Processing document... Please wait."):
80
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
81
+ docs = loader.load()
82
+ st.json(docs[0].metadata)
83
+
84
+ # Embedding Model
85
+ model_name = "nomic-ai/modernbert-embed-base"
86
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs = {'normalize_embeddings': False})
87
+
88
+ # Prevent unnecessary re-chunking
89
+ if not st.session_state.chunked:
90
+ text_splitter = SemanticChunker(embedding_model)
91
+ document_chunks = text_splitter.split_documents(docs)
92
+ st.session_state.processed_chunks = document_chunks
93
+ st.session_state.chunked = True
94
+
95
+ st.session_state.pdf_loaded = True
96
+ st.success("βœ… Document processed and chunked successfully!")
97
+
98
+ # ----------------- Setup Vector Store -----------------
99
+ if not st.session_state.vector_created and st.session_state.processed_chunks:
100
+ with st.spinner("πŸ”„ Initializing Vector Store..."):
101
+ st.session_state.vector_store = Chroma(
102
+ collection_name="deepseek_collection",
103
+ collection_metadata={"hnsw:space": "cosine"},
104
+ embedding_function=embedding_model
105
+ )
106
+ st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
107
+ st.session_state.vector_created = True
108
+ st.success("βœ… Vector store initialized successfully!")
109
+
110
+ # ----------------- Query Input -----------------
111
+ query = st.text_input("πŸ” Ask a question about the document:")
112
+
113
+ if query:
114
+ with st.spinner("πŸ”„ Retrieving relevant context..."):
115
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
116
+ retrieved_docs = retriever.invoke(query)
117
+ context = [d.page_content for d in retrieved_docs]
118
+ st.success("βœ… Context retrieved successfully!")
119
+
120
+ # ----------------- Run Individual Chains Explicitly -----------------
121
+ context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
122
+ relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
123
+ relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
124
+ response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
125
+
126
+ response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
127
+ relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
128
+ contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
129
+ final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
130
+
131
+ # ----------------- Display All Outputs -----------------
132
+ st.markdown("### πŸŸ₯ Context Relevancy Evaluation")
133
+ st.json(response_crisis["relevancy_response"])
134
+
135
+ st.markdown("### 🟦 Picked Relevant Contexts")
136
+ st.json(relevant_response["context_number"])
137
+
138
+ st.markdown("### πŸŸ₯ Extracted Relevant Contexts")
139
+ st.json(contexts["relevant_contexts"])
140
+
141
+ st.markdown("## πŸŸ₯ RAG Final Response")
142
+ st.write(final_response["final_response"])
143
+
144
+ st.text("\n-------- πŸŸ₯ context_relevancy_evaluation_chain Statement πŸŸ₯ --------\n")
145
+ st.json(final_response["relevancy_response"])
146
+
147
+ st.text("\n-------- 🟦 pick_relevant_context_chain Statement 🟦 --------\n")
148
+ st.json(final_response["context_number"])
149
+
150
+ st.text("\n-------- πŸŸ₯ relevant_contexts_chain Statement πŸŸ₯ --------\n")
151
+ st.json(final_response["relevant_contexts"])
152
+
153
+ st.text("\n-------- πŸŸ₯ Rag Response Statement πŸŸ₯ --------\n")
154
+ st.json(final_response["final_response"])