Update lab/title_issue_attempt1.py
Browse files- lab/title_issue_attempt1.py +87 -42
lab/title_issue_attempt1.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
import requests
|
4 |
import pdfplumber
|
5 |
import chromadb
|
@@ -14,8 +15,7 @@ from langchain_groq import ChatGroq
|
|
14 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
15 |
|
16 |
# ----------------- Streamlit UI Setup -----------------
|
17 |
-
st.set_page_config(page_title="Blah", layout="centered")
|
18 |
-
st.title("Blah-1")
|
19 |
|
20 |
# ----------------- API Keys -----------------
|
21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
@@ -30,7 +30,6 @@ rag_llm.verbose = True
|
|
30 |
# Clear ChromaDB cache to fix tenant issue
|
31 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
32 |
|
33 |
-
st.title("Blah")
|
34 |
|
35 |
# ----------------- ChromaDB Persistent Directory -----------------
|
36 |
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
@@ -48,34 +47,80 @@ if "processed_chunks" not in st.session_state:
|
|
48 |
if "vector_store" not in st.session_state:
|
49 |
st.session_state.vector_store = None
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def extract_metadata(pdf_path):
|
53 |
-
"""Extracts
|
|
|
54 |
with pdfplumber.open(pdf_path) as pdf:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# Extract
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
# Extract affiliations
|
75 |
-
affiliations = re.findall(r"(?:Department|Faculty|Institute|University|College|School)\s+[\w\s]+", pdf.pages[0].extract_text() or "")
|
76 |
-
affiliation_str = ", ".join(affiliations) if affiliations else "No affiliations found"
|
77 |
-
|
78 |
-
return title, author, email_str, affiliation_str
|
79 |
|
80 |
# ----------------- Step 1: Choose PDF Source -----------------
|
81 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
@@ -118,22 +163,25 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
118 |
st.json(docs[0].metadata)
|
119 |
|
120 |
# Extract metadata
|
121 |
-
|
122 |
-
|
123 |
-
# Display extracted
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
# Embedding Model
|
131 |
model_name = "nomic-ai/modernbert-embed-base"
|
132 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
133 |
|
134 |
# Convert metadata into a retrievable chunk
|
135 |
-
|
136 |
-
|
137 |
|
138 |
# Prevent unnecessary re-chunking
|
139 |
if not st.session_state.chunked:
|
@@ -191,9 +239,6 @@ if query:
|
|
191 |
st.markdown("### Extracted Relevant Contexts")
|
192 |
st.json(contexts["relevant_contexts"])
|
193 |
|
194 |
-
st.markdown("### RAG Final Response")
|
195 |
-
st.write(final_response["final_response"])
|
196 |
-
|
197 |
st.subheader("context_relevancy_evaluation_chain Statement")
|
198 |
st.json(final_response["relevancy_response"])
|
199 |
|
@@ -204,4 +249,4 @@ if query:
|
|
204 |
st.json(final_response["relevant_contexts"])
|
205 |
|
206 |
st.subheader("RAG Response Statement")
|
207 |
-
st.json(final_response["final_response"])
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import json
|
4 |
import requests
|
5 |
import pdfplumber
|
6 |
import chromadb
|
|
|
15 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
16 |
|
17 |
# ----------------- Streamlit UI Setup -----------------
|
18 |
+
st.set_page_config(page_title="Blah-1", layout="centered")
|
|
|
19 |
|
20 |
# ----------------- API Keys -----------------
|
21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
|
30 |
# Clear ChromaDB cache to fix tenant issue
|
31 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
32 |
|
|
|
33 |
|
34 |
# ----------------- ChromaDB Persistent Directory -----------------
|
35 |
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
|
|
47 |
if "vector_store" not in st.session_state:
|
48 |
st.session_state.vector_store = None
|
49 |
|
50 |
+
|
51 |
+
# ----------------- Text Cleaning Functions -----------------
|
52 |
+
def clean_extracted_text(text):
|
53 |
+
"""
|
54 |
+
Cleans extracted PDF text by removing excessive line breaks, fixing spacing issues, and resolving OCR artifacts.
|
55 |
+
"""
|
56 |
+
text = re.sub(r'\n+', '\n', text) # Remove excessive newlines
|
57 |
+
text = re.sub(r'\s{2,}', ' ', text) # Remove extra spaces
|
58 |
+
text = re.sub(r'(\w)-\n(\w)', r'\1\2', text) # Fix hyphenated words split by a newline
|
59 |
+
return text.strip()
|
60 |
+
|
61 |
+
def extract_title_manually(text):
|
62 |
+
"""
|
63 |
+
Attempts to find the title by checking the first few lines.
|
64 |
+
- Titles are usually long enough (more than 5 words).
|
65 |
+
- Ignores common header text like "Abstract", "Introduction".
|
66 |
+
"""
|
67 |
+
lines = text.split("\n")
|
68 |
+
ignore_keywords = ["abstract", "introduction", "keywords", "contents", "table", "figure"]
|
69 |
+
|
70 |
+
for line in lines[:5]: # Check only the first 5 lines
|
71 |
+
clean_line = line.strip()
|
72 |
+
if len(clean_line.split()) > 5 and not any(word.lower() in clean_line.lower() for word in ignore_keywords):
|
73 |
+
return clean_line # Return first valid title
|
74 |
+
return "Unknown"
|
75 |
+
|
76 |
+
# ----------------- Metadata Extraction -----------------
|
77 |
+
# ----------------- Metadata Extraction -----------------
|
78 |
def extract_metadata(pdf_path):
|
79 |
+
"""Extracts metadata using simple heuristics without LLM."""
|
80 |
+
|
81 |
with pdfplumber.open(pdf_path) as pdf:
|
82 |
+
if not pdf.pages:
|
83 |
+
return {
|
84 |
+
"Title": "Unknown",
|
85 |
+
"Author": "Unknown",
|
86 |
+
"Emails": "No emails found",
|
87 |
+
"Affiliations": "No affiliations found"
|
88 |
+
}
|
89 |
+
|
90 |
+
# Extract text from the first page
|
91 |
+
first_page_text = pdf.pages[0].extract_text() or "No text found."
|
92 |
+
cleaned_text = clean_extracted_text(first_page_text)
|
93 |
+
|
94 |
+
# Extract Title
|
95 |
+
pre_extracted_title = extract_title_manually(cleaned_text)
|
96 |
+
|
97 |
+
# Extract Authors (Names typically appear before affiliations)
|
98 |
+
author_pattern = re.compile(r"([\w\-\s]+,\s?)+[\w\-\s]+")
|
99 |
+
authors = "Unknown"
|
100 |
+
for line in cleaned_text.split("\n"):
|
101 |
+
match = author_pattern.search(line)
|
102 |
+
if match:
|
103 |
+
authors = match.group(0)
|
104 |
+
break
|
105 |
+
|
106 |
+
# Extract Emails
|
107 |
+
email_pattern = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
|
108 |
+
emails = ", ".join(email_pattern.findall(cleaned_text)) or "No emails found"
|
109 |
+
|
110 |
+
# Extract Affiliations (usually below author names)
|
111 |
+
affiliations = "Unknown"
|
112 |
+
for i, line in enumerate(cleaned_text.split("\n")):
|
113 |
+
if "@" in line: # Email appears before affiliations
|
114 |
+
affiliations = cleaned_text.split("\n")[i + 1] if i + 1 < len(cleaned_text.split("\n")) else "Unknown"
|
115 |
+
break
|
116 |
+
|
117 |
+
return {
|
118 |
+
"Title": pre_extracted_title,
|
119 |
+
"Author": authors,
|
120 |
+
"Emails": emails,
|
121 |
+
"Affiliations": affiliations
|
122 |
+
}
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
# ----------------- Step 1: Choose PDF Source -----------------
|
126 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
|
|
163 |
st.json(docs[0].metadata)
|
164 |
|
165 |
# Extract metadata
|
166 |
+
metadata = extract_metadata(st.session_state.pdf_path)
|
167 |
+
|
168 |
+
# Display extracted-metadata
|
169 |
+
if isinstance(metadata, dict):
|
170 |
+
st.subheader("π Extracted Document Metadata")
|
171 |
+
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
|
172 |
+
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
|
173 |
+
st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
|
174 |
+
st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
|
175 |
+
else:
|
176 |
+
st.error("Metadata extraction failed.")
|
177 |
|
178 |
# Embedding Model
|
179 |
model_name = "nomic-ai/modernbert-embed-base"
|
180 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
181 |
|
182 |
# Convert metadata into a retrievable chunk
|
183 |
+
metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
|
184 |
+
|
185 |
|
186 |
# Prevent unnecessary re-chunking
|
187 |
if not st.session_state.chunked:
|
|
|
239 |
st.markdown("### Extracted Relevant Contexts")
|
240 |
st.json(contexts["relevant_contexts"])
|
241 |
|
|
|
|
|
|
|
242 |
st.subheader("context_relevancy_evaluation_chain Statement")
|
243 |
st.json(final_response["relevancy_response"])
|
244 |
|
|
|
249 |
st.json(final_response["relevant_contexts"])
|
250 |
|
251 |
st.subheader("RAG Response Statement")
|
252 |
+
st.json(final_response["final_response"])
|