Update lab/title_issue.py
Browse files- lab/title_issue.py +53 -32
lab/title_issue.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import requests
|
|
|
4 |
import chromadb
|
|
|
5 |
from langchain.document_loaders import PDFPlumberLoader
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain_experimental.text_splitter import SemanticChunker
|
8 |
from langchain_chroma import Chroma
|
9 |
-
from langchain.chains import LLMChain
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
from langchain_groq import ChatGroq
|
12 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
@@ -18,8 +20,9 @@ st.title("Blah-1")
|
|
18 |
# ----------------- API Keys -----------------
|
19 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
20 |
|
21 |
-
# -----------------
|
22 |
-
|
|
|
23 |
|
24 |
# ----------------- Initialize Session State -----------------
|
25 |
if "pdf_loaded" not in st.session_state:
|
@@ -33,47 +36,48 @@ if "processed_chunks" not in st.session_state:
|
|
33 |
if "vector_store" not in st.session_state:
|
34 |
st.session_state.vector_store = None
|
35 |
|
36 |
-
# -----------------
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# ----------------- PDF Selection -----------------
|
45 |
-
#st.subheader("PDF Selection")
|
46 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
47 |
|
48 |
if pdf_source == "Upload a PDF file":
|
49 |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
50 |
if uploaded_file:
|
51 |
-
st.session_state.pdf_path = "temp.pdf"
|
52 |
with open(st.session_state.pdf_path, "wb") as f:
|
53 |
f.write(uploaded_file.getbuffer())
|
54 |
st.session_state.pdf_loaded = False
|
55 |
st.session_state.chunked = False
|
56 |
st.session_state.vector_created = False
|
57 |
|
58 |
-
elif pdf_source == "Enter a PDF URL":
|
59 |
-
pdf_url = st.text_input("Enter PDF URL:")
|
60 |
-
if pdf_url and not st.session_state.pdf_loaded:
|
61 |
-
with st.spinner("π Downloading PDF..."):
|
62 |
-
try:
|
63 |
-
response = requests.get(pdf_url)
|
64 |
-
if response.status_code == 200:
|
65 |
-
st.session_state.pdf_path = "temp.pdf"
|
66 |
-
with open(st.session_state.pdf_path, "wb") as f:
|
67 |
-
f.write(response.content)
|
68 |
-
st.session_state.pdf_loaded = False
|
69 |
-
st.session_state.chunked = False
|
70 |
-
st.session_state.vector_created = False
|
71 |
-
st.success("β
PDF Downloaded Successfully!")
|
72 |
-
else:
|
73 |
-
st.error("β Failed to download PDF. Check the URL.")
|
74 |
-
except Exception as e:
|
75 |
-
st.error(f"Error downloading PDF: {e}")
|
76 |
-
|
77 |
# ----------------- Process PDF -----------------
|
78 |
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
79 |
with st.spinner("π Processing document... Please wait."):
|
@@ -81,14 +85,29 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
81 |
docs = loader.load()
|
82 |
st.json(docs[0].metadata)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Embedding Model
|
85 |
model_name = "nomic-ai/modernbert-embed-base"
|
86 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Prevent unnecessary re-chunking
|
89 |
if not st.session_state.chunked:
|
90 |
text_splitter = SemanticChunker(embedding_model)
|
91 |
document_chunks = text_splitter.split_documents(docs)
|
|
|
92 |
st.session_state.processed_chunks = document_chunks
|
93 |
st.session_state.chunked = True
|
94 |
|
@@ -99,6 +118,7 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
99 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
100 |
with st.spinner("π Initializing Vector Store..."):
|
101 |
st.session_state.vector_store = Chroma(
|
|
|
102 |
collection_name="deepseek_collection",
|
103 |
collection_metadata={"hnsw:space": "cosine"},
|
104 |
embedding_function=embedding_model
|
@@ -107,6 +127,7 @@ if not st.session_state.vector_created and st.session_state.processed_chunks:
|
|
107 |
st.session_state.vector_created = True
|
108 |
st.success("β
Vector store initialized successfully!")
|
109 |
|
|
|
110 |
# ----------------- Query Input -----------------
|
111 |
query = st.text_input("π Ask a question about the document:")
|
112 |
|
@@ -151,4 +172,4 @@ if query:
|
|
151 |
st.json(final_response["relevant_contexts"])
|
152 |
|
153 |
st.subheader("RAG Response Statement")
|
154 |
-
st.json(final_response["final_response"])
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import requests
|
4 |
+
import pdfplumber
|
5 |
import chromadb
|
6 |
+
import re
|
7 |
from langchain.document_loaders import PDFPlumberLoader
|
8 |
from langchain_huggingface import HuggingFaceEmbeddings
|
9 |
from langchain_experimental.text_splitter import SemanticChunker
|
10 |
from langchain_chroma import Chroma
|
11 |
+
from langchain.chains import LLMChain
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain_groq import ChatGroq
|
14 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
|
|
20 |
# ----------------- API Keys -----------------
|
21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
22 |
|
23 |
+
# ----------------- ChromaDB Persistent Directory -----------------
|
24 |
+
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
25 |
+
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
26 |
|
27 |
# ----------------- Initialize Session State -----------------
|
28 |
if "pdf_loaded" not in st.session_state:
|
|
|
36 |
if "vector_store" not in st.session_state:
|
37 |
st.session_state.vector_store = None
|
38 |
|
39 |
+
# ----------------- Improved Metadata Extraction -----------------
|
40 |
+
def extract_metadata(pdf_path):
|
41 |
+
"""Extracts title, author, emails, and affiliations from PDF."""
|
42 |
+
with pdfplumber.open(pdf_path) as pdf:
|
43 |
+
metadata = pdf.metadata or {}
|
44 |
|
45 |
+
# Extract title
|
46 |
+
title = metadata.get("Title", "").strip()
|
47 |
+
if not title and pdf.pages:
|
48 |
+
text = pdf.pages[0].extract_text()
|
49 |
+
title_match = re.search(r"(?i)title[:\-]?\s*(.*)", text or "")
|
50 |
+
title = title_match.group(1) if title_match else text.split("\n")[0] if text else "Untitled Document"
|
51 |
+
|
52 |
+
# Extract author
|
53 |
+
author = metadata.get("Author", "").strip()
|
54 |
+
if not author and pdf.pages:
|
55 |
+
author_match = re.search(r"(?i)by\s+([A-Za-z\s,]+)", pdf.pages[0].extract_text() or "")
|
56 |
+
author = author_match.group(1).strip() if author_match else "Unknown Author"
|
57 |
+
|
58 |
+
# Extract emails
|
59 |
+
emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "")
|
60 |
+
email_str = ", ".join(emails) if emails else "No emails found"
|
61 |
+
|
62 |
+
# Extract affiliations
|
63 |
+
affiliations = re.findall(r"(?:Department|Faculty|Institute|University|College|School)\s+[\w\s]+", pdf.pages[0].extract_text() or "")
|
64 |
+
affiliation_str = ", ".join(affiliations) if affiliations else "No affiliations found"
|
65 |
+
|
66 |
+
return title, author, email_str, affiliation_str
|
67 |
|
68 |
# ----------------- PDF Selection -----------------
|
|
|
69 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
70 |
|
71 |
if pdf_source == "Upload a PDF file":
|
72 |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
73 |
if uploaded_file:
|
74 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
75 |
with open(st.session_state.pdf_path, "wb") as f:
|
76 |
f.write(uploaded_file.getbuffer())
|
77 |
st.session_state.pdf_loaded = False
|
78 |
st.session_state.chunked = False
|
79 |
st.session_state.vector_created = False
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# ----------------- Process PDF -----------------
|
82 |
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
83 |
with st.spinner("π Processing document... Please wait."):
|
|
|
85 |
docs = loader.load()
|
86 |
st.json(docs[0].metadata)
|
87 |
|
88 |
+
# Extract metadata
|
89 |
+
title, author, email_str, affiliation_str = extract_metadata(st.session_state.pdf_path)
|
90 |
+
|
91 |
+
# Display extracted metadata
|
92 |
+
st.subheader("π Extracted Document Metadata")
|
93 |
+
st.write(f"**Title:** {title}")
|
94 |
+
st.write(f"**Author:** {author}")
|
95 |
+
st.write(f"**Emails:** {email_str}")
|
96 |
+
st.write(f"**Affiliations:** {affiliation_str}")
|
97 |
+
|
98 |
# Embedding Model
|
99 |
model_name = "nomic-ai/modernbert-embed-base"
|
100 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
101 |
+
|
102 |
+
# Convert metadata into a retrievable chunk
|
103 |
+
metadata_text = f"Title: {title}\nAuthor: {author}\nEmails: {email_str}\nAffiliations: {affiliation_str}"
|
104 |
+
metadata_doc = {"page_content": metadata_text, "metadata": {"source": "metadata"}}
|
105 |
|
106 |
# Prevent unnecessary re-chunking
|
107 |
if not st.session_state.chunked:
|
108 |
text_splitter = SemanticChunker(embedding_model)
|
109 |
document_chunks = text_splitter.split_documents(docs)
|
110 |
+
document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
|
111 |
st.session_state.processed_chunks = document_chunks
|
112 |
st.session_state.chunked = True
|
113 |
|
|
|
118 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
119 |
with st.spinner("π Initializing Vector Store..."):
|
120 |
st.session_state.vector_store = Chroma(
|
121 |
+
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
|
122 |
collection_name="deepseek_collection",
|
123 |
collection_metadata={"hnsw:space": "cosine"},
|
124 |
embedding_function=embedding_model
|
|
|
127 |
st.session_state.vector_created = True
|
128 |
st.success("β
Vector store initialized successfully!")
|
129 |
|
130 |
+
|
131 |
# ----------------- Query Input -----------------
|
132 |
query = st.text_input("π Ask a question about the document:")
|
133 |
|
|
|
172 |
st.json(final_response["relevant_contexts"])
|
173 |
|
174 |
st.subheader("RAG Response Statement")
|
175 |
+
st.json(final_response["final_response"])
|