File size: 2,345 Bytes
4565014
0e897fd
 
6315870
4565014
6315870
 
 
4565014
6315870
d791bac
6315870
 
d791bac
 
44f8d36
 
6315870
44f8d36
 
 
d791bac
6315870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e897fd
 
 
6315870
0e897fd
 
1895e5d
 
 
 
 
 
 
 
 
 
6315870
1895e5d
 
 
 
 
 
fc2e364
1895e5d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import streamlit as st
import pandas as pd
import fitz  # PyMuPDF
from transformers import pipeline

# Load pre-trained model and tokenizer from Hugging Face
model_name = "google-bert/bert-base-uncased"
pipe = pipeline("text-classification", model=model_name)

# Custom labels for your classification task
labels = {
    "LABEL_0": "Negative",
    "LABEL_1": "Positive"
}

# Streamlit app
st.title("BERT Text Classification")
st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")

# Input text area
input_text = st.text_area("Enter text to classify")

def classify_text(text):
    result = pipe(text)[0]
    label = labels.get(result['label'], result['label'])
    score = result['score']
    
    # Adjust classification based on score
    if score < 0.75:
        label = "Negative"
    
    return label, score

if st.button("Classify"):
    if input_text:
        # Perform classification
        label, score = classify_text(input_text)
        st.write(f"**Predicted Class:** {label}")
        st.write(f"**Confidence:** {score:.4f}")
    else:
        st.write("Please enter some text to classify.")

# File upload section
st.write("Upload a file for classification:")
uploaded_file = st.file_uploader("Choose a file", type=["csv", "pdf"])

if uploaded_file is not None:
    try:
        if uploaded_file.type == "text/csv":
            # Process CSV file
            df = pd.read_csv(uploaded_file, encoding='utf-8')
            if 'text' not in df.columns:
                st.write("The CSV file must contain a 'text' column.")
            else:
                df['Prediction'] = df['text'].apply(lambda x: classify_text(x)[0])
                df['Confidence'] = df['text'].apply(lambda x: classify_text(x)[1])
                st.write(df)

        elif uploaded_file.type == "application/pdf":
            # Process PDF file
            with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
                text = ""
                for page in doc:
                    text += page.get_text()

                # Perform classification
                label, score = classify_text(text)
                st.write(f"**Predicted Class for PDF:** {label}")
                st.write(f"**Confidence:** {score:.4f}")
    except Exception as e:
        st.error(f"Error: {e}")