Akhil Koduri commited on
Commit
0e897fd
·
verified ·
1 Parent(s): 3306790

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -6
app.py CHANGED
@@ -1,4 +1,6 @@
1
  import streamlit as st
 
 
2
  from transformers import pipeline
3
 
4
  # Load pre-trained model and tokenizer from Hugging Face
@@ -12,22 +14,54 @@ labels = {
12
  }
13
 
14
  # Streamlit app
15
- st.title("Text Classification")
16
 
17
  st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")
18
 
 
19
  input_text = st.text_area("Enter text to classify")
20
 
 
 
 
 
 
 
21
  if st.button("Classify"):
22
  if input_text:
23
  # Perform classification
24
- result = pipe(input_text)
25
-
26
- # Extract label and score
27
- label = labels.get(result[0]['label'], result[0]['label'])
28
- score = result[0]['score']
29
 
30
  st.write(f"**Predicted Class:** {label}")
31
  st.write(f"**Confidence:** {score:.4f}")
32
  else:
33
  st.write("Please enter some text to classify.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import pandas as pd
3
+ import fitz # PyMuPDF
4
  from transformers import pipeline
5
 
6
  # Load pre-trained model and tokenizer from Hugging Face
 
14
  }
15
 
16
  # Streamlit app
17
+ st.title("BERT Text Classification")
18
 
19
  st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")
20
 
21
+ # Input text area
22
  input_text = st.text_area("Enter text to classify")
23
 
24
+ def classify_text(text):
25
+ result = pipe(text)[0]
26
+ label = labels.get(result['label'], result['label'])
27
+ score = result['score']
28
+ return label, score
29
+
30
  if st.button("Classify"):
31
  if input_text:
32
  # Perform classification
33
+ label, score = classify_text(input_text)
 
 
 
 
34
 
35
  st.write(f"**Predicted Class:** {label}")
36
  st.write(f"**Confidence:** {score:.4f}")
37
  else:
38
  st.write("Please enter some text to classify.")
39
+
40
+ # File upload section
41
+ st.write("Upload a file for classification:")
42
+
43
+ uploaded_file = st.file_uploader("Choose a file", type=["csv", "pdf"])
44
+
45
+ if uploaded_file is not None:
46
+ if uploaded_file.type == "text/csv":
47
+ # Process CSV file
48
+ df = pd.read_csv(uploaded_file)
49
+ if 'text' not in df.columns:
50
+ st.write("The CSV file must contain a 'text' column.")
51
+ else:
52
+ df['Prediction'] = df['text'].apply(lambda x: classify_text(x)[0])
53
+ df['Confidence'] = df['text'].apply(lambda x: classify_text(x)[1])
54
+ st.write(df)
55
+
56
+ elif uploaded_file.type == "application/pdf":
57
+ # Process PDF file
58
+ with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
59
+ text = ""
60
+ for page in doc:
61
+ text += page.get_text()
62
+
63
+ # Perform classification
64
+ label, score = classify_text(text)
65
+
66
+ st.write(f"**Predicted Class for PDF:** {label}")
67
+ st.write(f"**Confidence:** {score:.4f}")