Spaces:
Sleeping
Sleeping
Akhil Koduri
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,27 +5,19 @@ import docx
|
|
5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
import torch
|
7 |
from io import StringIO
|
8 |
-
import openpyxl
|
9 |
|
10 |
-
# Load pre-trained model and tokenizer
|
11 |
model_name = "google/bert-base-uncased"
|
12 |
tokenizer = BertTokenizer.from_pretrained(model_name)
|
13 |
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
14 |
|
15 |
-
# Custom labels for
|
16 |
labels = {
|
17 |
-
|
18 |
-
|
19 |
}
|
20 |
|
21 |
-
#
|
22 |
-
st.title("BERT Text Classification")
|
23 |
-
|
24 |
-
st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")
|
25 |
-
|
26 |
-
# Input text area
|
27 |
-
input_text = st.text_area("Enter text to classify")
|
28 |
-
|
29 |
def classify_text(text):
|
30 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
31 |
outputs = model(**inputs)
|
@@ -35,7 +27,7 @@ def classify_text(text):
|
|
35 |
confidence_score = confidence_score.item()
|
36 |
predicted_class = predicted_class.item()
|
37 |
|
38 |
-
label = labels[
|
39 |
|
40 |
# Adjust classification based on score
|
41 |
if confidence_score < 0.75:
|
@@ -43,73 +35,37 @@ def classify_text(text):
|
|
43 |
|
44 |
return label, confidence_score
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
# File upload section
|
57 |
st.write("Upload a file for classification:")
|
58 |
-
|
59 |
uploaded_file = st.file_uploader("Choose a file", type=["csv", "pdf", "txt", "doc", "docx", "xlsx"])
|
60 |
|
61 |
if uploaded_file is not None:
|
62 |
file_type = uploaded_file.type
|
63 |
if file_type == "text/csv":
|
64 |
-
# Process CSV file
|
65 |
df = pd.read_csv(uploaded_file)
|
66 |
-
if 'text' not in df.columns:
|
67 |
-
st.write("The CSV file must contain a 'text' column.")
|
68 |
-
else:
|
69 |
-
df['Prediction'] = df['text'].apply(lambda x: classify_text(x)[0])
|
70 |
-
df['Confidence'] = df['text'].apply(lambda x: classify_text(x)[1])
|
71 |
-
st.write(df)
|
72 |
-
|
73 |
elif file_type == "application/pdf":
|
74 |
-
# Process PDF file
|
75 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
76 |
-
text = ""
|
77 |
-
for page in doc:
|
78 |
-
text += page.get_text()
|
79 |
-
|
80 |
-
# Perform classification
|
81 |
-
label, score = classify_text(text)
|
82 |
-
|
83 |
-
st.write(f"**Predicted Class for PDF:** {label}")
|
84 |
-
st.write(f"**Confidence:** {score:.4f}")
|
85 |
-
|
86 |
elif file_type == "text/plain":
|
87 |
-
|
88 |
-
text = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
|
89 |
-
|
90 |
-
# Perform classification
|
91 |
-
label, score = classify_text(text)
|
92 |
-
|
93 |
-
st.write(f"**Predicted Class for TXT:** {label}")
|
94 |
-
st.write(f"**Confidence:** {score:.4f}")
|
95 |
-
|
96 |
elif file_type in ["application/vnd.openxmlformats-officedocument.wordprocessingml.document", "application/msword"]:
|
97 |
-
# Process DOCX or DOC file
|
98 |
doc = docx.Document(uploaded_file)
|
99 |
-
text = "\n".join(
|
100 |
|
101 |
-
|
102 |
label, score = classify_text(text)
|
103 |
-
|
104 |
-
st.write(f"
|
105 |
-
st.write(f"**Confidence:** {score:.4f}")
|
106 |
-
|
107 |
-
elif file_type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
|
108 |
-
# Process XLSX file
|
109 |
-
df = pd.read_excel(uploaded_file)
|
110 |
-
if 'text' not in df.columns:
|
111 |
-
st.write("The XLSX file must contain a 'text' column.")
|
112 |
-
else:
|
113 |
-
df['Prediction'] = df['text'].apply(lambda x: classify_text(x)[0])
|
114 |
-
df['Confidence'] = df['text'].apply(lambda x: classify_text(x)[1])
|
115 |
-
st.write(df)
|
|
|
5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
import torch
|
7 |
from io import StringIO
|
|
|
8 |
|
9 |
+
# Load pre-trained model and tokenizer
|
10 |
model_name = "google/bert-base-uncased"
|
11 |
tokenizer = BertTokenizer.from_pretrained(model_name)
|
12 |
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
13 |
|
14 |
+
# Custom labels for classification
|
15 |
labels = {
|
16 |
+
0: "Negative",
|
17 |
+
1: "Positive"
|
18 |
}
|
19 |
|
20 |
+
# Function to classify text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def classify_text(text):
|
22 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
23 |
outputs = model(**inputs)
|
|
|
27 |
confidence_score = confidence_score.item()
|
28 |
predicted_class = predicted_class.item()
|
29 |
|
30 |
+
label = labels[predicted_class]
|
31 |
|
32 |
# Adjust classification based on score
|
33 |
if confidence_score < 0.75:
|
|
|
35 |
|
36 |
return label, confidence_score
|
37 |
|
38 |
+
# Streamlit app
|
39 |
+
st.title("BERT Text Classification")
|
40 |
+
st.write("This app classifies text using a pre-trained BERT model.")
|
41 |
+
|
42 |
+
# Input text area
|
43 |
+
input_text = st.text_area("Enter text to classify")
|
44 |
|
45 |
+
# Classification and display
|
46 |
+
if st.button("Classify") and input_text:
|
47 |
+
label, score = classify_text(input_text)
|
48 |
+
st.write(f"Predicted Class: {label}")
|
49 |
+
st.write(f"Confidence: {score:.4f}")
|
50 |
|
51 |
# File upload section
|
52 |
st.write("Upload a file for classification:")
|
|
|
53 |
uploaded_file = st.file_uploader("Choose a file", type=["csv", "pdf", "txt", "doc", "docx", "xlsx"])
|
54 |
|
55 |
if uploaded_file is not None:
|
56 |
file_type = uploaded_file.type
|
57 |
if file_type == "text/csv":
|
|
|
58 |
df = pd.read_csv(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
elif file_type == "application/pdf":
|
|
|
60 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
61 |
+
text = "".join(page.get_text() for page in doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
elif file_type == "text/plain":
|
63 |
+
text = uploaded_file.getvalue().decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
elif file_type in ["application/vnd.openxmlformats-officedocument.wordprocessingml.document", "application/msword"]:
|
|
|
65 |
doc = docx.Document(uploaded_file)
|
66 |
+
text = "\n".join(para.text for para in doc.paragraphs)
|
67 |
|
68 |
+
if 'text' in locals():
|
69 |
label, score = classify_text(text)
|
70 |
+
st.write(f"Predicted Class for {file_type}: {label}")
|
71 |
+
st.write(f"Confidence: {score:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|