Spaces:
Sleeping
Sleeping
Akhil Koduri
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,16 @@ from transformers import pipeline
|
|
5 |
model_name = "google-bert/bert-base-uncased"
|
6 |
pipe = pipeline("text-classification", model=model_name)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Streamlit app
|
9 |
-
st.title("
|
|
|
|
|
10 |
|
11 |
input_text = st.text_area("Enter text to classify")
|
12 |
|
@@ -15,7 +23,11 @@ if st.button("Classify"):
|
|
15 |
# Perform classification
|
16 |
result = pipe(input_text)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
else:
|
21 |
st.write("Please enter some text to classify.")
|
|
|
5 |
model_name = "google-bert/bert-base-uncased"
|
6 |
pipe = pipeline("text-classification", model=model_name)
|
7 |
|
8 |
+
# Custom labels for your classification task
|
9 |
+
labels = {
|
10 |
+
"LABEL_0": "Negative",
|
11 |
+
"LABEL_1": "Positive"
|
12 |
+
}
|
13 |
+
|
14 |
# Streamlit app
|
15 |
+
st.title("Text Classification")
|
16 |
+
|
17 |
+
st.write("This app uses a pre-trained BERT model to classify text into positive or negative sentiment.")
|
18 |
|
19 |
input_text = st.text_area("Enter text to classify")
|
20 |
|
|
|
23 |
# Perform classification
|
24 |
result = pipe(input_text)
|
25 |
|
26 |
+
# Extract label and score
|
27 |
+
label = labels.get(result[0]['label'], result[0]['label'])
|
28 |
+
score = result[0]['score']
|
29 |
+
|
30 |
+
st.write(f"**Predicted Class:** {label}")
|
31 |
+
st.write(f"**Confidence:** {score:.4f}")
|
32 |
else:
|
33 |
st.write("Please enter some text to classify.")
|