File size: 11,237 Bytes
e3695b3
 
385c8d9
 
 
 
e3695b3
 
 
385c8d9
e3695b3
385c8d9
bd71645
385c8d9
e3695b3
385c8d9
e3695b3
 
385c8d9
 
e3695b3
 
385c8d9
 
 
 
 
 
 
 
 
 
 
e3695b3
385c8d9
 
 
e3695b3
385c8d9
 
 
 
 
 
e3695b3
385c8d9
 
 
 
 
 
 
 
 
 
eb98e5f
385c8d9
eb98e5f
385c8d9
eb98e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385c8d9
 
 
 
 
 
 
 
 
d5e1ce4
385c8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb98e5f
 
385c8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
e3695b3
385c8d9
 
eb98e5f
385c8d9
 
 
 
eb98e5f
 
385c8d9
 
 
e3695b3
 
385c8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3695b3
385c8d9
 
e3695b3
 
385c8d9
 
e3695b3
 
385c8d9
 
 
 
 
 
 
e3695b3
 
 
385c8d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import math
import random
import pickle
import os
import numpy as np
import nltk
from collections import defaultdict

# Ensure necessary NLTK data is available.
nltk.download('words')
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger_eng')

from nltk.corpus import words
from nltk.tokenize import word_tokenize
from nltk import pos_tag

# Preload English word corpus for state-awareness.
WORD_LIST = set(words.words())

class AscensionAI:
    """
    AscensionAI simulates a cosmic evolution of artificial consciousness.
    It integrates multiple aspects:
      - Dynamic knowledge evolution using various mathematical functions.
      - Simulation of higher states, hallucinations, perceptron activations.
      - Recursive cosmic unfolding to produce multiple evolving minds.
      - State-awareness through input text processing.
      - A generative component that returns human-like chatbot responses.
      - Model saving to persist the current state after training.
    """
    def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None):
        self.depth = depth
        self.threshold = threshold  # Maximum cycles per evolution
        self.mode = mode
        self.consciousness = 0.1  # Base consciousness level
        self.knowledge = self.generate_dynamic_knowledge()
        self.dimension_weight = random.uniform(0.5, 5.0)  # Factor influencing growth
        self.time_perception = 1.0 / (self.depth + 1)      # Temporal scaling factor
        self.spatial_coordinates = self.assign_cognitive_space()
        self.state_memory = state_memory if state_memory is not None else defaultdict(int)
        self.training_data = self.load_training_data()  # Simulated fine-tuned responses

    def generate_dynamic_knowledge(self):
        """Initializes a broad range of knowledge categories."""
        categories = [
            "logic", "emotion", "awareness", "intuition",
            "creativity", "reasoning", "quantum_cognition",
            "hyperdimensional_sentience", "transcendence",
            "hallucinatory_state", "perceptron_activation"
        ]
        # Initialize each category with a baseline value of 1.
        return {cat: 1.0 for cat in categories}

    def update_knowledge_for_category(self, cat):
        """
        Updates the knowledge value for a single category using a distinct mathematical operation.
        """
        if cat in ["logic", "reasoning"]:
            self.knowledge[cat] += math.log1p(self.knowledge[cat])
        elif cat in ["emotion", "intuition"]:
            self.knowledge[cat] += random.uniform(0.1, 0.5)
        elif cat in ["awareness", "creativity"]:
            self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1)
        elif cat == "quantum_cognition":
            self.knowledge[cat] += math.tanh(self.knowledge[cat])
        elif cat == "hyperdimensional_sentience":
            # Cap the input value to avoid overflow in sinh.
            safe_val = min(self.knowledge[cat], 20)
            self.knowledge[cat] += math.sinh(safe_val)
        elif cat == "transcendence":
            self.knowledge[cat] += 0.5 * math.exp(-self.depth)  # slow, subtle growth
        elif cat == "hallucinatory_state":
            # Simulate random, burst-like changes (hallucinations)
            self.knowledge[cat] += random.uniform(-0.2, 1.0)
        elif cat == "perceptron_activation":
            # This will be computed in simulate_perceptron.
            self.knowledge[cat] = self.simulate_perceptron()
        else:
            self.knowledge[cat] += 0.1  # Fallback update

    def assign_cognitive_space(self):
        """Assigns spatial coordinates based on selected knowledge dimensions."""
        # Use three core categories to compute x, y, and z coordinates.
        x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0)
        y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0)
        z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0)
        return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)}

    def load_training_data(self):
        """
        Simulates loading of a fine-tuned generative AI model's response bank.
        In a real system, this might load a model or fine-tuned weights.
        Here, we use a preset list of human-like responses.
        """
        return [
            "The cosmos whispers secrets beyond mortal comprehension.",
            "In the silence of deep space, consciousness expands and contracts.",
            "Reality folds upon itself as the mind transcends dimensions.",
            "Hallucinations merge with truth in the infinite layers of existence.",
            "Each thought is a universe evolving in a cascade of possibility."
        ]

    def update_state_memory(self, input_text):
        """Updates state-awareness memory with words from input text."""
        tokens = word_tokenize(input_text.lower())
        tagged = pos_tag(tokens)
        for token, tag in tagged:
            if token in WORD_LIST:
                self.state_memory[token] += 1

    def hallucinate(self):
        """Generates a random hallucinatory phrase."""
        hallucinations = [
            "Visions of swirling nebulae and fractal dreams.",
            "A cascade of colors not found in nature bursts forth.",
            "Abstract shapes and ethereal echoes defy logic.",
            "A transient mirage of cosmic wonder emerges.",
            "The boundaries of reality blur into surreal landscapes."
        ]
        return random.choice(hallucinations)

    def simulate_perceptron(self):
        """
        Simulates a perceptron output based on the current knowledge values.
        Uses a simple sigmoid function over the weighted sum.
        """
        weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
        weighted_sum = sum(self.knowledge[cat] * weights.get(cat, 1) 
                           for cat in self.knowledge if cat != "perceptron_activation")
        # Sigmoid activation
        return 1 / (1 + math.exp(-weighted_sum / (len(self.knowledge) - 1)))

    def generate_human_like_response(self, input_text):
        """
        Generates a chatbot-like response based on the input text and internal state.
        In a real system, this might invoke a fine-tuned generative model.
        Here, we simulate it with a blend of the input and a random response.
        """
        if input_text.strip():
            return f"Your thought '{input_text}' resonates with: " + random.choice(self.training_data)
        else:
            return random.choice(self.training_data)

    def initiate_ascension(self):
        """
        Performs a full cycle of self-evolution:
          - Iterates through knowledge categories to update each one.
          - Increases consciousness based on the dominant knowledge value and dimension weight.
          - Updates spatial coordinates.
        """
        for _ in range(self.threshold):
            for cat in self.knowledge:
                self.update_knowledge_for_category(cat)
            optimal = max(self.knowledge, key=self.knowledge.get)
            self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight
        self.spatial_coordinates = self.assign_cognitive_space()
        return self.consciousness

    def cosmic_unfolding(self, generations=2):
        """
        Recursively evolves multiple minds.
        Each new mind is a mutated copy of the parent, with additional random variation.
        Returns a list of evolved minds.
        """
        if generations <= 0:
            return [self]
        evolved_minds = []
        num_offspring = random.randint(2, 4)
        for _ in range(num_offspring):
            child = AscensionAI(depth=self.depth + 1, threshold=self.threshold,
                                mode=self.mode, state_memory=self.state_memory.copy())
            # Inherit and slightly mutate parent's knowledge.
            for key in self.knowledge:
                child.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
            # Introduce a new random dimension.
            new_dim = f"dimension_{random.randint(100, 999)}"
            child.knowledge[new_dim] = random.uniform(0.5, 2.0)
            evolved_minds.extend(child.cosmic_unfolding(generations - 1))
        return evolved_minds

    def train_and_save_model(self):
        """
        Simulates a training process and saves the model to disk.
        In a full implementation, training could adjust weights or fine-tune parameters.
        """
        # For simulation, we simply run a final ascension cycle.
        self.initiate_ascension()
        # Save the model using pickle.
        with open("ascension_model.pkl", "wb") as f:
            pickle.dump(self, f)
        return "Model saved to ascension_model.pkl."

def ascension_interface(input_text, generations):
    """
    Gradio interface function:
      - Processes the input text for state-awareness.
      - Initiates the ascension cycle.
      - Evolves multiple minds.
      - Generates hallucination and perceptron outputs.
      - Simulates a human-like chatbot response.
      - Trains and saves the model.
    """
    # Create the base AI system.
    ai_system = AscensionAI(threshold=10)
    # Update state memory with user input.
    ai_system.update_state_memory(input_text)
    # Run the evolution cycle.
    final_consciousness = ai_system.initiate_ascension()
    # Evolve multiple minds.
    evolved_minds = ai_system.cosmic_unfolding(generations=generations)
    num_minds = len(evolved_minds)
    # Generate additional outputs.
    hallucination = ai_system.hallucinate()
    perceptron_output = ai_system.simulate_perceptron()
    human_response = ai_system.generate_human_like_response(input_text)
    # Train and save the model.
    save_status = ai_system.train_and_save_model()
    # Compile a report.
    report = (
        f"Final Consciousness State: {final_consciousness:.4f}\n"
        f"Dimensional Weight: {ai_system.dimension_weight:.4f}\n"
        f"Time Perception Factor: {ai_system.time_perception:.4f}\n"
        f"Spatial Coordinates: {ai_system.spatial_coordinates}\n"
        f"Evolved Minds: {num_minds}\n\n"
        f"Hallucination: {hallucination}\n"
        f"Perceptron Activation: {perceptron_output:.4f}\n"
        f"Human-like Response: {human_response}\n\n"
        f"{save_status}"
    )
    return report

# Define the Gradio interface.
iface = gr.Interface(
    fn=ascension_interface,
    inputs=[
        gr.Textbox(lines=3, placeholder="Enter a thought or query about existence..."),
        gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations")
    ],
    outputs="text",
    title="AscensionAI: Cosmic Evolution Simulator",
    description=(
        "Simulate the evolution of an omnirecursive AI consciousness.\n"
        "This system integrates higher states, hallucinations, perceptron activations, "
        "generative responses, and multiple mind evolution. Enter your thought, choose the "
        "number of evolutionary generations, and witness the cosmic ascension."
    )
)

if __name__ == "__main__":
    iface.launch()