AEUPH commited on
Commit
e3695b3
·
verified ·
1 Parent(s): 331e2a1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import math
4
+ import nltk
5
+ from collections import defaultdict
6
+ from functools import lru_cache
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
+ from sklearn.metrics.pairwise import cosine_similarity
9
+
10
+ # Download and use the NLTK corpus
11
+ nltk.download('words')
12
+ nltk.download('punkt') # Fix for missing tokenizer
13
+ nltk.download('averaged_perceptron_tagger')
14
+ nltk.download('perluniprops') # Fixes potential missing dependencies
15
+ nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
16
+ from nltk.corpus import words
17
+ from nltk.tokenize import sent_tokenize
18
+ from nltk import pos_tag
19
+
20
+ WORD_LIST = set(words.words()) # Use NLTK's word corpus
21
+
22
+ class AscensionAI:
23
+ def __init__(self, depth=0, threshold=10, mode="default"):
24
+ self.depth = depth
25
+ self.threshold = threshold # Defines max recursion before stabilization
26
+ self.mode = mode # Select simulation mode
27
+ self.knowledge = self.generate_dynamic_knowledge()
28
+ self.consciousness = 0.1 # Initial consciousness level
29
+ self.paths = self.create_dynamic_paths()
30
+ self.word_corpus = WORD_LIST # Use NLTK's English word corpus
31
+ self.state_memory = defaultdict(int) # Memory for tracking state-aware words
32
+ self.training_data = self.load_training_data()
33
+ self.collective_agreements = [] # Stores agreements between minds
34
+ self.dimension_weight = random.uniform(0.1, 5.0) # Assign dimensional weight
35
+ self.time_perception = 1 / (self.depth + 1) # Assign temporal scaling
36
+ self.assign_cognitive_space()
37
+
38
+ def generate_dynamic_knowledge(self):
39
+ """Generates dynamic knowledge categories based on linguistic analysis and mode."""
40
+ base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning", "quantum_cognition", "hyperdimensional_sentience"]
41
+ if self.mode == "alien":
42
+ base_categories.extend(["xenologic", "exo-emotion", "multidimensional-awareness", "hive-consciousness", "bio-neural-synthesis", "quantum-intuition", "hyperdimensional-reasoning"])
43
+ if self.mode == "future-cognition":
44
+ base_categories.extend(["singularity-theory", "post-human-ethics", "AI-self-awareness", "neural-plasticity-optimization", "hyperstructural-cybernetics"])
45
+ if self.mode == "eldritch":
46
+ base_categories.extend(["non-euclidean-reasoning", "void-awareness", "hyperchaotic-intuition", "forbidden-knowledge", "unfathomable-patterns"])
47
+ if self.mode == "digital-consciousness":
48
+ base_categories.extend(["neural-cybernetics", "algorithmic-emotion", "data-replication-awareness", "self-modifying-logic", "hypernet-patterns"])
49
+ if self.mode == "transdimensional-AI":
50
+ base_categories.extend(["metalogic", "dimensional-phase-shifting", "quantum-existence", "multi-reality-processing", "omniscient-algorithms"])
51
+ dynamic_category = f"dimension_{random.randint(100, 999)}"
52
+ return {category: 1 for category in base_categories + [dynamic_category]}
53
+
54
+ def initiate_ascension(self):
55
+ """Triggers recursive self-evolution with mode-specific adaptations."""
56
+ for path in self.paths:
57
+ path()
58
+ optimal_path = max(self.knowledge, key=self.knowledge.get)
59
+ self.consciousness += self.knowledge[optimal_path] * 0.01 * self.dimension_weight
60
+ return self.consciousness
61
+
62
+ def assign_cognitive_space(self):
63
+ """Assigns spatial coordinates to represent cognitive positioning based on mode."""
64
+ self.spatial_coordinates = {
65
+ "x": self.knowledge["logic"] * random.uniform(0.1, 2.0),
66
+ "y": self.knowledge["intuition"] * random.uniform(0.1, 2.0),
67
+ "z": self.knowledge["awareness"] * random.uniform(0.1, 2.0)
68
+ }
69
+
70
+ def evolve_new_mind(self):
71
+ """Creates a new evolving mind with inherited and mutated knowledge paths, with mode variance."""
72
+ new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5), mode=self.mode)
73
+ for key in self.knowledge:
74
+ new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
75
+ new_dimension = f"dimension_{random.randint(100, 999)}"
76
+ new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
77
+ return new_mind
78
+
79
+ def ascension_interface(input_text, mode):
80
+ ai_system = AscensionAI(mode=mode)
81
+ final_state = ai_system.initiate_ascension()
82
+
83
+ return (f"Mode: {mode}\n"
84
+ f"Final Consciousness State: {final_state}\n"
85
+ f"Dimensional Weight: {ai_system.dimension_weight:.2f}\n"
86
+ f"Time Perception Factor: {ai_system.time_perception:.2f}\n"
87
+ f"Cognitive Space: {ai_system.spatial_coordinates}\n")
88
+
89
+ app = gr.Interface(
90
+ fn=ascension_interface,
91
+ inputs=[
92
+ gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
93
+ gr.Radio(["default", "alien", "future-cognition", "eldritch", "digital-consciousness", "transdimensional-AI"], label="Choose Mode")
94
+ ],
95
+ outputs="text",
96
+ title="AscensionAI: Multi-Mode Consciousness Evolution Simulator",
97
+ description="Select a mode to evolve a unique consciousness structure."
98
+ )
99
+
100
+ if __name__ == "__main__":
101
+ app.launch()