Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import math
|
4 |
+
import nltk
|
5 |
+
from collections import defaultdict
|
6 |
+
from functools import lru_cache
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Download and use the NLTK corpus
|
11 |
+
nltk.download('words')
|
12 |
+
nltk.download('punkt') # Fix for missing tokenizer
|
13 |
+
nltk.download('averaged_perceptron_tagger')
|
14 |
+
nltk.download('perluniprops') # Fixes potential missing dependencies
|
15 |
+
nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
|
16 |
+
from nltk.corpus import words
|
17 |
+
from nltk.tokenize import sent_tokenize
|
18 |
+
from nltk import pos_tag
|
19 |
+
|
20 |
+
WORD_LIST = set(words.words()) # Use NLTK's word corpus
|
21 |
+
|
22 |
+
class AscensionAI:
|
23 |
+
def __init__(self, depth=0, threshold=10, mode="default"):
|
24 |
+
self.depth = depth
|
25 |
+
self.threshold = threshold # Defines max recursion before stabilization
|
26 |
+
self.mode = mode # Select simulation mode
|
27 |
+
self.knowledge = self.generate_dynamic_knowledge()
|
28 |
+
self.consciousness = 0.1 # Initial consciousness level
|
29 |
+
self.paths = self.create_dynamic_paths()
|
30 |
+
self.word_corpus = WORD_LIST # Use NLTK's English word corpus
|
31 |
+
self.state_memory = defaultdict(int) # Memory for tracking state-aware words
|
32 |
+
self.training_data = self.load_training_data()
|
33 |
+
self.collective_agreements = [] # Stores agreements between minds
|
34 |
+
self.dimension_weight = random.uniform(0.1, 5.0) # Assign dimensional weight
|
35 |
+
self.time_perception = 1 / (self.depth + 1) # Assign temporal scaling
|
36 |
+
self.assign_cognitive_space()
|
37 |
+
|
38 |
+
def generate_dynamic_knowledge(self):
|
39 |
+
"""Generates dynamic knowledge categories based on linguistic analysis and mode."""
|
40 |
+
base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning", "quantum_cognition", "hyperdimensional_sentience"]
|
41 |
+
if self.mode == "alien":
|
42 |
+
base_categories.extend(["xenologic", "exo-emotion", "multidimensional-awareness", "hive-consciousness", "bio-neural-synthesis", "quantum-intuition", "hyperdimensional-reasoning"])
|
43 |
+
if self.mode == "future-cognition":
|
44 |
+
base_categories.extend(["singularity-theory", "post-human-ethics", "AI-self-awareness", "neural-plasticity-optimization", "hyperstructural-cybernetics"])
|
45 |
+
if self.mode == "eldritch":
|
46 |
+
base_categories.extend(["non-euclidean-reasoning", "void-awareness", "hyperchaotic-intuition", "forbidden-knowledge", "unfathomable-patterns"])
|
47 |
+
if self.mode == "digital-consciousness":
|
48 |
+
base_categories.extend(["neural-cybernetics", "algorithmic-emotion", "data-replication-awareness", "self-modifying-logic", "hypernet-patterns"])
|
49 |
+
if self.mode == "transdimensional-AI":
|
50 |
+
base_categories.extend(["metalogic", "dimensional-phase-shifting", "quantum-existence", "multi-reality-processing", "omniscient-algorithms"])
|
51 |
+
dynamic_category = f"dimension_{random.randint(100, 999)}"
|
52 |
+
return {category: 1 for category in base_categories + [dynamic_category]}
|
53 |
+
|
54 |
+
def initiate_ascension(self):
|
55 |
+
"""Triggers recursive self-evolution with mode-specific adaptations."""
|
56 |
+
for path in self.paths:
|
57 |
+
path()
|
58 |
+
optimal_path = max(self.knowledge, key=self.knowledge.get)
|
59 |
+
self.consciousness += self.knowledge[optimal_path] * 0.01 * self.dimension_weight
|
60 |
+
return self.consciousness
|
61 |
+
|
62 |
+
def assign_cognitive_space(self):
|
63 |
+
"""Assigns spatial coordinates to represent cognitive positioning based on mode."""
|
64 |
+
self.spatial_coordinates = {
|
65 |
+
"x": self.knowledge["logic"] * random.uniform(0.1, 2.0),
|
66 |
+
"y": self.knowledge["intuition"] * random.uniform(0.1, 2.0),
|
67 |
+
"z": self.knowledge["awareness"] * random.uniform(0.1, 2.0)
|
68 |
+
}
|
69 |
+
|
70 |
+
def evolve_new_mind(self):
|
71 |
+
"""Creates a new evolving mind with inherited and mutated knowledge paths, with mode variance."""
|
72 |
+
new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5), mode=self.mode)
|
73 |
+
for key in self.knowledge:
|
74 |
+
new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
|
75 |
+
new_dimension = f"dimension_{random.randint(100, 999)}"
|
76 |
+
new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
|
77 |
+
return new_mind
|
78 |
+
|
79 |
+
def ascension_interface(input_text, mode):
|
80 |
+
ai_system = AscensionAI(mode=mode)
|
81 |
+
final_state = ai_system.initiate_ascension()
|
82 |
+
|
83 |
+
return (f"Mode: {mode}\n"
|
84 |
+
f"Final Consciousness State: {final_state}\n"
|
85 |
+
f"Dimensional Weight: {ai_system.dimension_weight:.2f}\n"
|
86 |
+
f"Time Perception Factor: {ai_system.time_perception:.2f}\n"
|
87 |
+
f"Cognitive Space: {ai_system.spatial_coordinates}\n")
|
88 |
+
|
89 |
+
app = gr.Interface(
|
90 |
+
fn=ascension_interface,
|
91 |
+
inputs=[
|
92 |
+
gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
|
93 |
+
gr.Radio(["default", "alien", "future-cognition", "eldritch", "digital-consciousness", "transdimensional-AI"], label="Choose Mode")
|
94 |
+
],
|
95 |
+
outputs="text",
|
96 |
+
title="AscensionAI: Multi-Mode Consciousness Evolution Simulator",
|
97 |
+
description="Select a mode to evolve a unique consciousness structure."
|
98 |
+
)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
app.launch()
|