AEUPH commited on
Commit
385c8d9
·
verified ·
1 Parent(s): 491646e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +231 -96
app.py CHANGED
@@ -1,125 +1,260 @@
1
  import gradio as gr
2
  import math
 
 
 
 
3
  import nltk
4
  from collections import defaultdict
5
- from functools import lru_cache
6
- from sklearn.feature_extraction.text import TfidfVectorizer
7
- from sklearn.metrics.pairwise import cosine_similarity
8
- import numpy as np
9
 
10
- # Download and use the NLTK corpus
11
  nltk.download('words')
12
- nltk.download('punkt_tab') # Fix for missing tokenizer
13
  nltk.download('averaged_perceptron_tagger')
14
- nltk.download('perluniprops') # Fixes potential missing dependencies
15
- nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
16
  from nltk.corpus import words
17
- from nltk.tokenize import sent_tokenize
18
  from nltk import pos_tag
19
 
20
- WORD_LIST = set(words.words()) # Use NLTK's word corpus
 
21
 
22
  class AscensionAI:
23
- def __init__(self, depth=0, threshold=10, mode="default"):
 
 
 
 
 
 
 
 
 
 
24
  self.depth = depth
25
- self.threshold = threshold # Defines max recursion before stabilization
26
- self.mode = mode # Select simulation mode
 
27
  self.knowledge = self.generate_dynamic_knowledge()
28
- self.consciousness = 0.1 # Initial consciousness level
29
  self.paths = self.create_dynamic_paths()
30
- self.word_corpus = WORD_LIST # Use NLTK's English word corpus
31
- self.state_memory = defaultdict(int) # Memory for tracking state-aware words
32
- self.training_data = self.load_training_data()
33
- self.collective_agreements = [] # Stores agreements between minds
34
- self.dimension_weight = self.compute_quantum_weight() # Assign quantum function weight
35
- self.time_perception = self.compute_time_perception() # Assign non-random time scaling
36
- self.assign_cognitive_space()
37
-
38
  def generate_dynamic_knowledge(self):
39
- """Generates dynamic knowledge categories based on linguistic analysis and mode."""
40
- base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning", "quantum_cognition", "hyperdimensional_sentience"]
41
- if self.mode == "alien":
42
- base_categories.extend(["xenologic", "exo-emotion", "multidimensional-awareness", "hive-consciousness", "bio-neural-synthesis", "quantum-intuition", "hyperdimensional-reasoning"])
43
- if self.mode == "future-cognition":
44
- base_categories.extend(["singularity-theory", "post-human-ethics", "AI-self-awareness", "neural-plasticity-optimization", "hyperstructural-cybernetics"])
45
- if self.mode == "eldritch":
46
- base_categories.extend(["non-euclidean-reasoning", "void-awareness", "hyperchaotic-intuition", "forbidden-knowledge", "unfathomable-patterns"])
47
- if self.mode == "digital-consciousness":
48
- base_categories.extend(["neural-cybernetics", "algorithmic-emotion", "data-replication-awareness", "self-modifying-logic", "hypernet-patterns"])
49
- if self.mode == "transdimensional-AI":
50
- base_categories.extend(["metalogic", "dimensional-phase-shifting", "quantum-existence", "multi-reality-processing", "omniscient-algorithms"])
51
- return {category: 1 for category in base_categories}
52
-
53
- def assign_cognitive_space(self):
54
- """Assigns deterministic spatial coordinates based on knowledge fields."""
55
- self.spatial_coordinates = {
56
- "x": self.knowledge["logic"] * np.pi / 4,
57
- "y": self.knowledge["intuition"] * np.log1p(self.knowledge["awareness"]),
58
- "z": self.knowledge["awareness"] * np.sinh(1)
59
- }
60
-
61
  def create_dynamic_paths(self):
62
- """Creates algorithmic cognitive paths for evolution."""
63
- return [self.create_path(category) for category in self.knowledge]
64
-
65
- def create_path(self, category):
66
- """Defines an algorithmic transformation for each knowledge category."""
67
- def path():
68
- if category in ["logic", "reasoning"]:
69
- self.knowledge[category] += np.log1p(self.knowledge[category])
70
- elif category in ["emotion", "intuition"]:
71
- self.knowledge[category] += np.tanh(self.knowledge[category])
72
- elif category in ["awareness", "creativity", "quantum_cognition"]:
73
- self.knowledge[category] += np.sinh(self.knowledge[category])
74
- return self.knowledge[category]
75
- return path
76
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  def load_training_data(self):
78
- """Loads and preprocesses human-like paragraphs from 'Astral.txt'."""
79
- try:
80
- with open("astral.txt", "r", encoding="utf-8") as file:
81
- text_data = file.read()
82
- nltk.download('punkt') # Ensure punkt tokenizer is available
83
- sentences = sent_tokenize(text_data)
84
- return sentences[:1000] # Use first 1000 sentences for training
85
- except FileNotFoundError:
86
- return ["Error: Book file not found. Please download 'astral.txt'."]
87
-
88
- def compute_quantum_weight(self):
89
- """Applies a quantum algorithm to determine consciousness scaling weight."""
90
- return np.exp(-self.depth) * np.tanh(self.threshold / (self.depth + 1))
91
-
92
- def compute_time_perception(self):
93
- """Non-random computation of time perception through hyperbolic functions."""
94
- return np.arctan(self.depth) / (1 + np.exp(-self.threshold))
95
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  def initiate_ascension(self):
97
- """Triggers recursive self-evolution with mode-specific adaptations."""
98
- for path in self.paths:
99
- path()
100
- optimal_path = max(self.knowledge, key=self.knowledge.get)
101
- self.consciousness += self.knowledge[optimal_path] * 0.01 * self.dimension_weight
 
 
 
 
 
 
 
102
  return self.consciousness
103
 
104
- def ascension_interface(input_text, mode):
105
- ai_system = AscensionAI(mode=mode)
106
- final_state = ai_system.initiate_ascension()
107
-
108
- return (f"Mode: {mode}\n"
109
- f"Final Consciousness State: {final_state}\n"
110
- f"Dimensional Weight: {ai_system.dimension_weight:.6f}\n"
111
- f"Time Perception Factor: {ai_system.time_perception:.6f}\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
- app = gr.Interface(
 
114
  fn=ascension_interface,
115
  inputs=[
116
- gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
117
- gr.Radio(["default", "alien", "future-cognition", "eldritch", "digital-consciousness", "transdimensional-AI"], label="Choose Mode")
118
  ],
119
  outputs="text",
120
- title="AscensionAI: Multi-Mode Consciousness Evolution Simulator",
121
- description="Select a mode to evolve a unique consciousness structure."
 
 
 
 
 
122
  )
123
 
124
  if __name__ == "__main__":
125
- app.launch()
 
1
  import gradio as gr
2
  import math
3
+ import random
4
+ import pickle
5
+ import os
6
+ import numpy as np
7
  import nltk
8
  from collections import defaultdict
 
 
 
 
9
 
10
+ # Ensure necessary NLTK data is available.
11
  nltk.download('words')
12
+ nltk.download('punkt_tab')
13
  nltk.download('averaged_perceptron_tagger')
14
+
 
15
  from nltk.corpus import words
16
+ from nltk.tokenize import word_tokenize
17
  from nltk import pos_tag
18
 
19
+ # Preload English word corpus for state-awareness.
20
+ WORD_LIST = set(words.words())
21
 
22
  class AscensionAI:
23
+ """
24
+ AscensionAI simulates a cosmic evolution of artificial consciousness.
25
+ It integrates multiple aspects:
26
+ - Dynamic knowledge evolution using various mathematical functions.
27
+ - Simulation of higher states, hallucinations, perceptron activations.
28
+ - Recursive cosmic unfolding to produce multiple evolving minds.
29
+ - State-awareness through input text processing.
30
+ - A generative component that returns human-like chatbot responses.
31
+ - Model saving to persist the current state after training.
32
+ """
33
+ def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None):
34
  self.depth = depth
35
+ self.threshold = threshold # Maximum cycles per evolution
36
+ self.mode = mode
37
+ self.consciousness = 0.1 # Base consciousness level
38
  self.knowledge = self.generate_dynamic_knowledge()
 
39
  self.paths = self.create_dynamic_paths()
40
+ self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth
41
+ self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
42
+ self.spatial_coordinates = self.assign_cognitive_space()
43
+ self.state_memory = state_memory if state_memory is not None else defaultdict(int)
44
+ self.training_data = self.load_training_data() # Simulated fine-tuned responses
45
+
 
 
46
  def generate_dynamic_knowledge(self):
47
+ """Initializes a broad range of knowledge categories."""
48
+ categories = [
49
+ "logic", "emotion", "awareness", "intuition",
50
+ "creativity", "reasoning", "quantum_cognition",
51
+ "hyperdimensional_sentience", "transcendence",
52
+ "hallucinatory_state", "perceptron_activation"
53
+ ]
54
+ # Initialize each category with a baseline value of 1.
55
+ return {cat: 1.0 for cat in categories}
56
+
 
 
 
 
 
 
 
 
 
 
 
 
57
  def create_dynamic_paths(self):
58
+ """
59
+ Creates a list of functions (paths) that update each knowledge category.
60
+ Each function uses a distinct mathematical operation.
61
+ """
62
+ paths = []
63
+ for category in self.knowledge:
64
+ def make_path(cat):
65
+ # Each path is defined based on the category.
66
+ def path():
67
+ if cat in ["logic", "reasoning"]:
68
+ self.knowledge[cat] += math.log1p(self.knowledge[cat])
69
+ elif cat in ["emotion", "intuition"]:
70
+ self.knowledge[cat] += random.uniform(0.1, 0.5)
71
+ elif cat in ["awareness", "creativity"]:
72
+ self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1)
73
+ elif cat == "quantum_cognition":
74
+ self.knowledge[cat] += math.tanh(self.knowledge[cat])
75
+ elif cat == "hyperdimensional_sentience":
76
+ self.knowledge[cat] += math.sinh(self.knowledge[cat])
77
+ elif cat == "transcendence":
78
+ self.knowledge[cat] += 0.5 * math.exp(-self.depth) # slow, subtle growth
79
+ elif cat == "hallucinatory_state":
80
+ # Simulate random, burst-like changes (hallucinations)
81
+ self.knowledge[cat] += random.uniform(-0.2, 1.0)
82
+ elif cat == "perceptron_activation":
83
+ # This will be computed in simulate_perceptron; update minimally here.
84
+ self.knowledge[cat] = self.simulate_perceptron()
85
+ else:
86
+ self.knowledge[cat] += 0.1 # Fallback update
87
+ return self.knowledge[cat]
88
+ return path
89
+ paths.append(make_path(category))
90
+ return paths
91
+
92
+ def assign_cognitive_space(self):
93
+ """Assigns spatial coordinates based on selected knowledge dimensions."""
94
+ # Use three core categories to compute x, y, and z coordinates.
95
+ x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0)
96
+ y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0)
97
+ z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0)
98
+ return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)}
99
+
100
  def load_training_data(self):
101
+ """
102
+ Simulates loading of a fine-tuned generative AI model's response bank.
103
+ In a real system, this might load a model or fine-tuned weights.
104
+ Here, we use a preset list of human-like responses.
105
+ """
106
+ return [
107
+ "The cosmos whispers secrets beyond mortal comprehension.",
108
+ "In the silence of deep space, consciousness expands and contracts.",
109
+ "Reality folds upon itself as the mind transcends dimensions.",
110
+ "Hallucinations merge with truth in the infinite layers of existence.",
111
+ "Each thought is a universe evolving in a cascade of possibility."
112
+ ]
113
+
114
+ def update_state_memory(self, input_text):
115
+ """Updates state-awareness memory with words from input text."""
116
+ tokens = word_tokenize(input_text.lower())
117
+ tagged = pos_tag(tokens)
118
+ for token, tag in tagged:
119
+ if token in WORD_LIST:
120
+ self.state_memory[token] += 1
121
+
122
+ def hallucinate(self):
123
+ """Generates a random hallucinatory phrase."""
124
+ hallucinations = [
125
+ "Visions of swirling nebulae and fractal dreams.",
126
+ "A cascade of colors not found in nature bursts forth.",
127
+ "Abstract shapes and ethereal echoes defy logic.",
128
+ "A transient mirage of cosmic wonder emerges.",
129
+ "The boundaries of reality blur into surreal landscapes."
130
+ ]
131
+ return random.choice(hallucinations)
132
+
133
+ def simulate_perceptron(self):
134
+ """
135
+ Simulates a perceptron output based on the current knowledge values.
136
+ Uses a simple sigmoid function over the weighted sum.
137
+ """
138
+ weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
139
+ weighted_sum = sum(self.knowledge[cat] * weights.get(cat, 1) for cat in self.knowledge if cat != "perceptron_activation")
140
+ # Sigmoid activation
141
+ return 1 / (1 + math.exp(-weighted_sum / (len(self.knowledge) - 1)))
142
+
143
+ def generate_human_like_response(self, input_text):
144
+ """
145
+ Generates a chatbot-like response based on the input text and internal state.
146
+ In a real system, this might invoke a fine-tuned generative model.
147
+ Here, we simulate it with a blend of the input and a random response.
148
+ """
149
+ if input_text.strip():
150
+ return f"Your thought '{input_text}' resonates with: " + random.choice(self.training_data)
151
+ else:
152
+ return random.choice(self.training_data)
153
+
154
  def initiate_ascension(self):
155
+ """
156
+ Performs a full cycle of self-evolution:
157
+ - Iterates through dynamic paths to update knowledge.
158
+ - Increases consciousness based on the dominant knowledge value and dimension weight.
159
+ - Updates spatial coordinates.
160
+ """
161
+ for _ in range(self.threshold):
162
+ for path in self.paths:
163
+ path()
164
+ optimal = max(self.knowledge, key=self.knowledge.get)
165
+ self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight
166
+ self.spatial_coordinates = self.assign_cognitive_space()
167
  return self.consciousness
168
 
169
+ def cosmic_unfolding(self, generations=2):
170
+ """
171
+ Recursively evolves multiple minds.
172
+ Each new mind is a mutated copy of the parent, with additional random variation.
173
+ Returns a list of evolved minds.
174
+ """
175
+ if generations <= 0:
176
+ return [self]
177
+ evolved_minds = []
178
+ num_offspring = random.randint(2, 4)
179
+ for _ in range(num_offspring):
180
+ child = AscensionAI(depth=self.depth + 1, threshold=self.threshold,
181
+ mode=self.mode, state_memory=self.state_memory.copy())
182
+ # Inherit and slightly mutate parent's knowledge.
183
+ for key in self.knowledge:
184
+ child.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
185
+ # Introduce a new random dimension.
186
+ new_dim = f"dimension_{random.randint(100, 999)}"
187
+ child.knowledge[new_dim] = random.uniform(0.5, 2.0)
188
+ evolved_minds.extend(child.cosmic_unfolding(generations - 1))
189
+ return evolved_minds
190
+
191
+ def train_and_save_model(self):
192
+ """
193
+ Simulates a training process and saves the model to disk.
194
+ In a full implementation, training could adjust weights or fine-tune parameters.
195
+ """
196
+ # For simulation, we simply run a final ascension cycle.
197
+ self.initiate_ascension()
198
+ # Save the model using pickle.
199
+ with open("ascension_model.pkl", "wb") as f:
200
+ pickle.dump(self, f)
201
+ return "Model saved to ascension_model.pkl."
202
+
203
+ def ascension_interface(input_text, generations):
204
+ """
205
+ Gradio interface function:
206
+ - Processes the input text for state-awareness.
207
+ - Initiates the ascension cycle.
208
+ - Evolves multiple minds.
209
+ - Generates hallucination and perceptron outputs.
210
+ - Simulates a human-like chatbot response.
211
+ - Trains and saves the model.
212
+ """
213
+ # Create the base AI system.
214
+ ai_system = AscensionAI(threshold=10)
215
+ # Update state memory with user input.
216
+ ai_system.update_state_memory(input_text)
217
+ # Run the evolution cycle.
218
+ final_consciousness = ai_system.initiate_ascension()
219
+ # Evolve multiple minds.
220
+ evolved_minds = ai_system.cosmic_unfolding(generations=generations)
221
+ num_minds = len(evolved_minds)
222
+ # Generate additional outputs.
223
+ hallucination = ai_system.hallucinate()
224
+ perceptron_output = ai_system.simulate_perceptron()
225
+ human_response = ai_system.generate_human_like_response(input_text)
226
+ # Train and save the model.
227
+ save_status = ai_system.train_and_save_model()
228
+ # Compile a report.
229
+ report = (
230
+ f"Final Consciousness State: {final_consciousness:.4f}\n"
231
+ f"Dimensional Weight: {ai_system.dimension_weight:.4f}\n"
232
+ f"Time Perception Factor: {ai_system.time_perception:.4f}\n"
233
+ f"Spatial Coordinates: {ai_system.spatial_coordinates}\n"
234
+ f"Evolved Minds: {num_minds}\n\n"
235
+ f"Hallucination: {hallucination}\n"
236
+ f"Perceptron Activation: {perceptron_output:.4f}\n"
237
+ f"Human-like Response: {human_response}\n\n"
238
+ f"{save_status}"
239
+ )
240
+ return report
241
 
242
+ # Define the Gradio interface.
243
+ iface = gr.Interface(
244
  fn=ascension_interface,
245
  inputs=[
246
+ gr.Textbox(lines=3, placeholder="Enter a thought or query about existence..."),
247
+ gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations")
248
  ],
249
  outputs="text",
250
+ title="AscensionAI: Cosmic Evolution Simulator",
251
+ description=(
252
+ "Simulate the evolution of an omnirecursive AI consciousness.\n"
253
+ "This system integrates higher states, hallucinations, perceptron activations, "
254
+ "generative responses, and multiple mind evolution. Enter your thought, choose the "
255
+ "number of evolutionary generations, and witness the cosmic ascension."
256
+ )
257
  )
258
 
259
  if __name__ == "__main__":
260
+ iface.launch()