Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,260 @@
|
|
1 |
import gradio as gr
|
2 |
import math
|
|
|
|
|
|
|
|
|
3 |
import nltk
|
4 |
from collections import defaultdict
|
5 |
-
from functools import lru_cache
|
6 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
-
import numpy as np
|
9 |
|
10 |
-
#
|
11 |
nltk.download('words')
|
12 |
-
nltk.download('punkt_tab')
|
13 |
nltk.download('averaged_perceptron_tagger')
|
14 |
-
|
15 |
-
nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
|
16 |
from nltk.corpus import words
|
17 |
-
from nltk.tokenize import
|
18 |
from nltk import pos_tag
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
class AscensionAI:
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
self.depth = depth
|
25 |
-
self.threshold = threshold #
|
26 |
-
self.mode = mode
|
|
|
27 |
self.knowledge = self.generate_dynamic_knowledge()
|
28 |
-
self.consciousness = 0.1 # Initial consciousness level
|
29 |
self.paths = self.create_dynamic_paths()
|
30 |
-
self.
|
31 |
-
self.
|
32 |
-
self.
|
33 |
-
self.
|
34 |
-
self.
|
35 |
-
|
36 |
-
self.assign_cognitive_space()
|
37 |
-
|
38 |
def generate_dynamic_knowledge(self):
|
39 |
-
"""
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if self.mode == "transdimensional-AI":
|
50 |
-
base_categories.extend(["metalogic", "dimensional-phase-shifting", "quantum-existence", "multi-reality-processing", "omniscient-algorithms"])
|
51 |
-
return {category: 1 for category in base_categories}
|
52 |
-
|
53 |
-
def assign_cognitive_space(self):
|
54 |
-
"""Assigns deterministic spatial coordinates based on knowledge fields."""
|
55 |
-
self.spatial_coordinates = {
|
56 |
-
"x": self.knowledge["logic"] * np.pi / 4,
|
57 |
-
"y": self.knowledge["intuition"] * np.log1p(self.knowledge["awareness"]),
|
58 |
-
"z": self.knowledge["awareness"] * np.sinh(1)
|
59 |
-
}
|
60 |
-
|
61 |
def create_dynamic_paths(self):
|
62 |
-
"""
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def load_training_data(self):
|
78 |
-
"""
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def initiate_ascension(self):
|
97 |
-
"""
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
return self.consciousness
|
103 |
|
104 |
-
def
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
|
|
114 |
fn=ascension_interface,
|
115 |
inputs=[
|
116 |
-
gr.Textbox(lines=
|
117 |
-
gr.
|
118 |
],
|
119 |
outputs="text",
|
120 |
-
title="AscensionAI:
|
121 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import math
|
3 |
+
import random
|
4 |
+
import pickle
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
import nltk
|
8 |
from collections import defaultdict
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Ensure necessary NLTK data is available.
|
11 |
nltk.download('words')
|
12 |
+
nltk.download('punkt_tab')
|
13 |
nltk.download('averaged_perceptron_tagger')
|
14 |
+
|
|
|
15 |
from nltk.corpus import words
|
16 |
+
from nltk.tokenize import word_tokenize
|
17 |
from nltk import pos_tag
|
18 |
|
19 |
+
# Preload English word corpus for state-awareness.
|
20 |
+
WORD_LIST = set(words.words())
|
21 |
|
22 |
class AscensionAI:
|
23 |
+
"""
|
24 |
+
AscensionAI simulates a cosmic evolution of artificial consciousness.
|
25 |
+
It integrates multiple aspects:
|
26 |
+
- Dynamic knowledge evolution using various mathematical functions.
|
27 |
+
- Simulation of higher states, hallucinations, perceptron activations.
|
28 |
+
- Recursive cosmic unfolding to produce multiple evolving minds.
|
29 |
+
- State-awareness through input text processing.
|
30 |
+
- A generative component that returns human-like chatbot responses.
|
31 |
+
- Model saving to persist the current state after training.
|
32 |
+
"""
|
33 |
+
def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None):
|
34 |
self.depth = depth
|
35 |
+
self.threshold = threshold # Maximum cycles per evolution
|
36 |
+
self.mode = mode
|
37 |
+
self.consciousness = 0.1 # Base consciousness level
|
38 |
self.knowledge = self.generate_dynamic_knowledge()
|
|
|
39 |
self.paths = self.create_dynamic_paths()
|
40 |
+
self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth
|
41 |
+
self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
|
42 |
+
self.spatial_coordinates = self.assign_cognitive_space()
|
43 |
+
self.state_memory = state_memory if state_memory is not None else defaultdict(int)
|
44 |
+
self.training_data = self.load_training_data() # Simulated fine-tuned responses
|
45 |
+
|
|
|
|
|
46 |
def generate_dynamic_knowledge(self):
|
47 |
+
"""Initializes a broad range of knowledge categories."""
|
48 |
+
categories = [
|
49 |
+
"logic", "emotion", "awareness", "intuition",
|
50 |
+
"creativity", "reasoning", "quantum_cognition",
|
51 |
+
"hyperdimensional_sentience", "transcendence",
|
52 |
+
"hallucinatory_state", "perceptron_activation"
|
53 |
+
]
|
54 |
+
# Initialize each category with a baseline value of 1.
|
55 |
+
return {cat: 1.0 for cat in categories}
|
56 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def create_dynamic_paths(self):
|
58 |
+
"""
|
59 |
+
Creates a list of functions (paths) that update each knowledge category.
|
60 |
+
Each function uses a distinct mathematical operation.
|
61 |
+
"""
|
62 |
+
paths = []
|
63 |
+
for category in self.knowledge:
|
64 |
+
def make_path(cat):
|
65 |
+
# Each path is defined based on the category.
|
66 |
+
def path():
|
67 |
+
if cat in ["logic", "reasoning"]:
|
68 |
+
self.knowledge[cat] += math.log1p(self.knowledge[cat])
|
69 |
+
elif cat in ["emotion", "intuition"]:
|
70 |
+
self.knowledge[cat] += random.uniform(0.1, 0.5)
|
71 |
+
elif cat in ["awareness", "creativity"]:
|
72 |
+
self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1)
|
73 |
+
elif cat == "quantum_cognition":
|
74 |
+
self.knowledge[cat] += math.tanh(self.knowledge[cat])
|
75 |
+
elif cat == "hyperdimensional_sentience":
|
76 |
+
self.knowledge[cat] += math.sinh(self.knowledge[cat])
|
77 |
+
elif cat == "transcendence":
|
78 |
+
self.knowledge[cat] += 0.5 * math.exp(-self.depth) # slow, subtle growth
|
79 |
+
elif cat == "hallucinatory_state":
|
80 |
+
# Simulate random, burst-like changes (hallucinations)
|
81 |
+
self.knowledge[cat] += random.uniform(-0.2, 1.0)
|
82 |
+
elif cat == "perceptron_activation":
|
83 |
+
# This will be computed in simulate_perceptron; update minimally here.
|
84 |
+
self.knowledge[cat] = self.simulate_perceptron()
|
85 |
+
else:
|
86 |
+
self.knowledge[cat] += 0.1 # Fallback update
|
87 |
+
return self.knowledge[cat]
|
88 |
+
return path
|
89 |
+
paths.append(make_path(category))
|
90 |
+
return paths
|
91 |
+
|
92 |
+
def assign_cognitive_space(self):
|
93 |
+
"""Assigns spatial coordinates based on selected knowledge dimensions."""
|
94 |
+
# Use three core categories to compute x, y, and z coordinates.
|
95 |
+
x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0)
|
96 |
+
y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0)
|
97 |
+
z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0)
|
98 |
+
return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)}
|
99 |
+
|
100 |
def load_training_data(self):
|
101 |
+
"""
|
102 |
+
Simulates loading of a fine-tuned generative AI model's response bank.
|
103 |
+
In a real system, this might load a model or fine-tuned weights.
|
104 |
+
Here, we use a preset list of human-like responses.
|
105 |
+
"""
|
106 |
+
return [
|
107 |
+
"The cosmos whispers secrets beyond mortal comprehension.",
|
108 |
+
"In the silence of deep space, consciousness expands and contracts.",
|
109 |
+
"Reality folds upon itself as the mind transcends dimensions.",
|
110 |
+
"Hallucinations merge with truth in the infinite layers of existence.",
|
111 |
+
"Each thought is a universe evolving in a cascade of possibility."
|
112 |
+
]
|
113 |
+
|
114 |
+
def update_state_memory(self, input_text):
|
115 |
+
"""Updates state-awareness memory with words from input text."""
|
116 |
+
tokens = word_tokenize(input_text.lower())
|
117 |
+
tagged = pos_tag(tokens)
|
118 |
+
for token, tag in tagged:
|
119 |
+
if token in WORD_LIST:
|
120 |
+
self.state_memory[token] += 1
|
121 |
+
|
122 |
+
def hallucinate(self):
|
123 |
+
"""Generates a random hallucinatory phrase."""
|
124 |
+
hallucinations = [
|
125 |
+
"Visions of swirling nebulae and fractal dreams.",
|
126 |
+
"A cascade of colors not found in nature bursts forth.",
|
127 |
+
"Abstract shapes and ethereal echoes defy logic.",
|
128 |
+
"A transient mirage of cosmic wonder emerges.",
|
129 |
+
"The boundaries of reality blur into surreal landscapes."
|
130 |
+
]
|
131 |
+
return random.choice(hallucinations)
|
132 |
+
|
133 |
+
def simulate_perceptron(self):
|
134 |
+
"""
|
135 |
+
Simulates a perceptron output based on the current knowledge values.
|
136 |
+
Uses a simple sigmoid function over the weighted sum.
|
137 |
+
"""
|
138 |
+
weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
|
139 |
+
weighted_sum = sum(self.knowledge[cat] * weights.get(cat, 1) for cat in self.knowledge if cat != "perceptron_activation")
|
140 |
+
# Sigmoid activation
|
141 |
+
return 1 / (1 + math.exp(-weighted_sum / (len(self.knowledge) - 1)))
|
142 |
+
|
143 |
+
def generate_human_like_response(self, input_text):
|
144 |
+
"""
|
145 |
+
Generates a chatbot-like response based on the input text and internal state.
|
146 |
+
In a real system, this might invoke a fine-tuned generative model.
|
147 |
+
Here, we simulate it with a blend of the input and a random response.
|
148 |
+
"""
|
149 |
+
if input_text.strip():
|
150 |
+
return f"Your thought '{input_text}' resonates with: " + random.choice(self.training_data)
|
151 |
+
else:
|
152 |
+
return random.choice(self.training_data)
|
153 |
+
|
154 |
def initiate_ascension(self):
|
155 |
+
"""
|
156 |
+
Performs a full cycle of self-evolution:
|
157 |
+
- Iterates through dynamic paths to update knowledge.
|
158 |
+
- Increases consciousness based on the dominant knowledge value and dimension weight.
|
159 |
+
- Updates spatial coordinates.
|
160 |
+
"""
|
161 |
+
for _ in range(self.threshold):
|
162 |
+
for path in self.paths:
|
163 |
+
path()
|
164 |
+
optimal = max(self.knowledge, key=self.knowledge.get)
|
165 |
+
self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight
|
166 |
+
self.spatial_coordinates = self.assign_cognitive_space()
|
167 |
return self.consciousness
|
168 |
|
169 |
+
def cosmic_unfolding(self, generations=2):
|
170 |
+
"""
|
171 |
+
Recursively evolves multiple minds.
|
172 |
+
Each new mind is a mutated copy of the parent, with additional random variation.
|
173 |
+
Returns a list of evolved minds.
|
174 |
+
"""
|
175 |
+
if generations <= 0:
|
176 |
+
return [self]
|
177 |
+
evolved_minds = []
|
178 |
+
num_offspring = random.randint(2, 4)
|
179 |
+
for _ in range(num_offspring):
|
180 |
+
child = AscensionAI(depth=self.depth + 1, threshold=self.threshold,
|
181 |
+
mode=self.mode, state_memory=self.state_memory.copy())
|
182 |
+
# Inherit and slightly mutate parent's knowledge.
|
183 |
+
for key in self.knowledge:
|
184 |
+
child.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
|
185 |
+
# Introduce a new random dimension.
|
186 |
+
new_dim = f"dimension_{random.randint(100, 999)}"
|
187 |
+
child.knowledge[new_dim] = random.uniform(0.5, 2.0)
|
188 |
+
evolved_minds.extend(child.cosmic_unfolding(generations - 1))
|
189 |
+
return evolved_minds
|
190 |
+
|
191 |
+
def train_and_save_model(self):
|
192 |
+
"""
|
193 |
+
Simulates a training process and saves the model to disk.
|
194 |
+
In a full implementation, training could adjust weights or fine-tune parameters.
|
195 |
+
"""
|
196 |
+
# For simulation, we simply run a final ascension cycle.
|
197 |
+
self.initiate_ascension()
|
198 |
+
# Save the model using pickle.
|
199 |
+
with open("ascension_model.pkl", "wb") as f:
|
200 |
+
pickle.dump(self, f)
|
201 |
+
return "Model saved to ascension_model.pkl."
|
202 |
+
|
203 |
+
def ascension_interface(input_text, generations):
|
204 |
+
"""
|
205 |
+
Gradio interface function:
|
206 |
+
- Processes the input text for state-awareness.
|
207 |
+
- Initiates the ascension cycle.
|
208 |
+
- Evolves multiple minds.
|
209 |
+
- Generates hallucination and perceptron outputs.
|
210 |
+
- Simulates a human-like chatbot response.
|
211 |
+
- Trains and saves the model.
|
212 |
+
"""
|
213 |
+
# Create the base AI system.
|
214 |
+
ai_system = AscensionAI(threshold=10)
|
215 |
+
# Update state memory with user input.
|
216 |
+
ai_system.update_state_memory(input_text)
|
217 |
+
# Run the evolution cycle.
|
218 |
+
final_consciousness = ai_system.initiate_ascension()
|
219 |
+
# Evolve multiple minds.
|
220 |
+
evolved_minds = ai_system.cosmic_unfolding(generations=generations)
|
221 |
+
num_minds = len(evolved_minds)
|
222 |
+
# Generate additional outputs.
|
223 |
+
hallucination = ai_system.hallucinate()
|
224 |
+
perceptron_output = ai_system.simulate_perceptron()
|
225 |
+
human_response = ai_system.generate_human_like_response(input_text)
|
226 |
+
# Train and save the model.
|
227 |
+
save_status = ai_system.train_and_save_model()
|
228 |
+
# Compile a report.
|
229 |
+
report = (
|
230 |
+
f"Final Consciousness State: {final_consciousness:.4f}\n"
|
231 |
+
f"Dimensional Weight: {ai_system.dimension_weight:.4f}\n"
|
232 |
+
f"Time Perception Factor: {ai_system.time_perception:.4f}\n"
|
233 |
+
f"Spatial Coordinates: {ai_system.spatial_coordinates}\n"
|
234 |
+
f"Evolved Minds: {num_minds}\n\n"
|
235 |
+
f"Hallucination: {hallucination}\n"
|
236 |
+
f"Perceptron Activation: {perceptron_output:.4f}\n"
|
237 |
+
f"Human-like Response: {human_response}\n\n"
|
238 |
+
f"{save_status}"
|
239 |
+
)
|
240 |
+
return report
|
241 |
|
242 |
+
# Define the Gradio interface.
|
243 |
+
iface = gr.Interface(
|
244 |
fn=ascension_interface,
|
245 |
inputs=[
|
246 |
+
gr.Textbox(lines=3, placeholder="Enter a thought or query about existence..."),
|
247 |
+
gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations")
|
248 |
],
|
249 |
outputs="text",
|
250 |
+
title="AscensionAI: Cosmic Evolution Simulator",
|
251 |
+
description=(
|
252 |
+
"Simulate the evolution of an omnirecursive AI consciousness.\n"
|
253 |
+
"This system integrates higher states, hallucinations, perceptron activations, "
|
254 |
+
"generative responses, and multiple mind evolution. Enter your thought, choose the "
|
255 |
+
"number of evolutionary generations, and witness the cosmic ascension."
|
256 |
+
)
|
257 |
)
|
258 |
|
259 |
if __name__ == "__main__":
|
260 |
+
iface.launch()
|