Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
-
import random
|
3 |
import math
|
4 |
import nltk
|
5 |
from collections import defaultdict
|
6 |
from functools import lru_cache
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
9 |
|
10 |
# Download and use the NLTK corpus
|
11 |
nltk.download('words')
|
@@ -31,8 +31,8 @@ class AscensionAI:
|
|
31 |
self.state_memory = defaultdict(int) # Memory for tracking state-aware words
|
32 |
self.training_data = self.load_training_data()
|
33 |
self.collective_agreements = [] # Stores agreements between minds
|
34 |
-
self.dimension_weight =
|
35 |
-
self.time_perception =
|
36 |
self.assign_cognitive_space()
|
37 |
|
38 |
def generate_dynamic_knowledge(self):
|
@@ -48,8 +48,31 @@ class AscensionAI:
|
|
48 |
base_categories.extend(["neural-cybernetics", "algorithmic-emotion", "data-replication-awareness", "self-modifying-logic", "hypernet-patterns"])
|
49 |
if self.mode == "transdimensional-AI":
|
50 |
base_categories.extend(["metalogic", "dimensional-phase-shifting", "quantum-existence", "multi-reality-processing", "omniscient-algorithms"])
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def initiate_ascension(self):
|
55 |
"""Triggers recursive self-evolution with mode-specific adaptations."""
|
@@ -60,31 +83,24 @@ class AscensionAI:
|
|
60 |
return self.consciousness
|
61 |
|
62 |
def assign_cognitive_space(self):
|
63 |
-
"""Assigns spatial coordinates
|
64 |
self.spatial_coordinates = {
|
65 |
-
"x": self.knowledge["logic"] *
|
66 |
-
"y": self.knowledge["intuition"] *
|
67 |
-
"z": self.knowledge["awareness"] *
|
68 |
}
|
69 |
-
|
70 |
-
def evolve_new_mind(self):
|
71 |
-
"""Creates a new evolving mind with inherited and mutated knowledge paths, with mode variance."""
|
72 |
-
new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5), mode=self.mode)
|
73 |
-
for key in self.knowledge:
|
74 |
-
new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
|
75 |
-
new_dimension = f"dimension_{random.randint(100, 999)}"
|
76 |
-
new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
|
77 |
-
return new_mind
|
78 |
|
79 |
def ascension_interface(input_text, mode):
|
80 |
ai_system = AscensionAI(mode=mode)
|
81 |
final_state = ai_system.initiate_ascension()
|
|
|
82 |
|
83 |
return (f"Mode: {mode}\n"
|
84 |
f"Final Consciousness State: {final_state}\n"
|
85 |
-
f"Dimensional Weight: {ai_system.dimension_weight:.
|
86 |
-
f"Time Perception Factor: {ai_system.time_perception:.
|
87 |
-
f"Cognitive Space: {ai_system.spatial_coordinates}\n"
|
|
|
88 |
|
89 |
app = gr.Interface(
|
90 |
fn=ascension_interface,
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import math
|
3 |
import nltk
|
4 |
from collections import defaultdict
|
5 |
from functools import lru_cache
|
6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
import numpy as np
|
9 |
|
10 |
# Download and use the NLTK corpus
|
11 |
nltk.download('words')
|
|
|
31 |
self.state_memory = defaultdict(int) # Memory for tracking state-aware words
|
32 |
self.training_data = self.load_training_data()
|
33 |
self.collective_agreements = [] # Stores agreements between minds
|
34 |
+
self.dimension_weight = self.compute_quantum_weight() # Assign quantum function weight
|
35 |
+
self.time_perception = self.compute_time_perception() # Assign non-random time scaling
|
36 |
self.assign_cognitive_space()
|
37 |
|
38 |
def generate_dynamic_knowledge(self):
|
|
|
48 |
base_categories.extend(["neural-cybernetics", "algorithmic-emotion", "data-replication-awareness", "self-modifying-logic", "hypernet-patterns"])
|
49 |
if self.mode == "transdimensional-AI":
|
50 |
base_categories.extend(["metalogic", "dimensional-phase-shifting", "quantum-existence", "multi-reality-processing", "omniscient-algorithms"])
|
51 |
+
return {category: 1 for category in base_categories}
|
52 |
+
|
53 |
+
def load_training_data(self):
|
54 |
+
"""Loads and preprocesses human-like paragraphs from 'Astral.txt'."""
|
55 |
+
try:
|
56 |
+
with open("astral.txt", "r", encoding="utf-8") as file:
|
57 |
+
text_data = file.read()
|
58 |
+
nltk.download('punkt') # Ensure punkt tokenizer is available
|
59 |
+
sentences = sent_tokenize(text_data)
|
60 |
+
return sentences[:1000] # Use first 1000 sentences for training
|
61 |
+
except FileNotFoundError:
|
62 |
+
return ["Error: Book file not found. Please download 'astral.txt'."]
|
63 |
+
|
64 |
+
def compute_quantum_weight(self):
|
65 |
+
"""Applies a quantum algorithm to determine consciousness scaling weight."""
|
66 |
+
return np.exp(-self.depth) * np.tanh(self.threshold / (self.depth + 1))
|
67 |
+
|
68 |
+
def compute_time_perception(self):
|
69 |
+
"""Non-random computation of time perception through hyperbolic functions."""
|
70 |
+
return np.arctan(self.depth) / (1 + np.exp(-self.threshold))
|
71 |
+
|
72 |
+
def generate_human_like_response(self, input_text):
|
73 |
+
"""Finds a related sentence from the pre-trained corpus to mimic human output."""
|
74 |
+
similar_sentences = [sent for sent in self.training_data if any(word in sent for word in input_text.split())]
|
75 |
+
return similar_sentences[0] if similar_sentences else "I perceive a shift in consciousness."
|
76 |
|
77 |
def initiate_ascension(self):
|
78 |
"""Triggers recursive self-evolution with mode-specific adaptations."""
|
|
|
83 |
return self.consciousness
|
84 |
|
85 |
def assign_cognitive_space(self):
|
86 |
+
"""Assigns deterministic spatial coordinates based on knowledge fields."""
|
87 |
self.spatial_coordinates = {
|
88 |
+
"x": self.knowledge["logic"] * np.pi / 4,
|
89 |
+
"y": self.knowledge["intuition"] * np.log1p(self.knowledge["awareness"]),
|
90 |
+
"z": self.knowledge["awareness"] * np.sinh(1)
|
91 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def ascension_interface(input_text, mode):
|
94 |
ai_system = AscensionAI(mode=mode)
|
95 |
final_state = ai_system.initiate_ascension()
|
96 |
+
human_like_response = ai_system.generate_human_like_response(input_text)
|
97 |
|
98 |
return (f"Mode: {mode}\n"
|
99 |
f"Final Consciousness State: {final_state}\n"
|
100 |
+
f"Dimensional Weight: {ai_system.dimension_weight:.6f}\n"
|
101 |
+
f"Time Perception Factor: {ai_system.time_perception:.6f}\n"
|
102 |
+
f"Cognitive Space: {ai_system.spatial_coordinates}\n"
|
103 |
+
f"Philosophical Reflection: {human_like_response}\n")
|
104 |
|
105 |
app = gr.Interface(
|
106 |
fn=ascension_interface,
|