File size: 5,176 Bytes
7621729
 
fbabb43
 
d4ada86
1a6d89d
d4ada86
 
fbabb43
0073e6e
8e1af04
fbabb43
 
1a6d89d
4f3aa82
dcea9bb
8859b60
7621729
dcea9bb
010c9cb
 
 
 
7621729
 
52dce41
4f3aa82
1a6d89d
 
 
 
 
 
 
c51d569
 
7621729
4f3aa82
8859b60
4f3aa82
7621729
0073e6e
1a6d89d
0073e6e
8859b60
4f3aa82
7621729
1a6d89d
 
 
 
 
 
010c9cb
7621729
dcea9bb
010c9cb
7621729
4f3aa82
010c9cb
1a6d89d
 
 
 
010c9cb
 
 
7621729
0073e6e
010c9cb
1a6d89d
 
 
d6e8610
1a6d89d
 
 
 
 
d6e8610
010c9cb
1a6d89d
 
 
 
 
 
010c9cb
 
1a6d89d
7621729
4f3aa82
010c9cb
8e1af04
 
010c9cb
 
 
0073e6e
 
1a6d89d
0073e6e
8859b60
010c9cb
1a6d89d
010c9cb
 
 
 
be67a1e
 
ace34fb
 
1a6d89d
c51d569
010c9cb
 
c51d569
010c9cb
 
 
 
dcea9bb
 
7621729
0073e6e
fbabb43
 
 
 
8859b60
0073e6e
7621729
d4ada86
1a6d89d
 
 
 
8859b60
 
fbabb43
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import logging
import threading
import numpy as np
import torch
import librosa
import soundfile as sf
from pydub import AudioSegment
from telegram import Update
from telegram.ext import ApplicationBuilder, MessageHandler, filters, CommandHandler
from transformers import pipeline
from huggingface_hub import login
import asyncio
from collections import defaultdict

# ===== تهيئة التوكن =====
login(token=os.getenv("HF_TOKEN"))

# ===== إعدادات النظام =====
logging.basicConfig(
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.INFO
)
logger = logging.getLogger(__name__)

# ===== تحميل النماذج =====
try:
    # 1. نموذج التعرف على الكلام
    asr_pipeline = pipeline(
        "automatic-speech-recognition",
        model="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
        token=os.getenv("HF_TOKEN")
    )

    # 2. نموذج توليف الصوت
    tts_pipeline = pipeline("text-to-speech", model="mohamedhossam/arabic-tts", token=os.getenv("HF_TOKEN"))

except Exception as e:
    logger.error(f"فشل تحميل النماذج: {str(e)}")
    raise

# ===== ذاكرة المحادثة =====
conversation_history = defaultdict(list)

# ===== دوال معالجة الصوت =====
def enhance_audio(input_path: str, output_path: str) -> bool:
    try:
        audio = AudioSegment.from_wav(input_path)
        audio = audio.low_pass_filter(3000)
        audio = audio.high_pass_filter(100)
        audio = audio.normalize()
        audio = audio.fade_in(150).fade_out(150)
        audio.export(output_path, format="wav")
        return True
    except Exception as e:
        logger.error(f"خطأ في تحسين الصوت: {str(e)}")
        return False

async def speech_to_text(audio_path: str) -> str:
    try:
        audio, sr = librosa.load(audio_path, sr=16000)
        sf.write("temp.wav", audio, sr)
        result = asr_pipeline("temp.wav")
        return result["text"]
    except Exception as e:
        logger.error(f"فشل التعرف على الصوت: {str(e)}")
        return ""

async def generate_response(text: str, user_id: str) -> str:
    try:
        # تحديث ذاكرة المحادثة
        conversation_history[user_id].append(text)
        context = "\n".join(conversation_history[user_id][-3:])
        
        chatbot = pipeline(
            "text-generation",
            model="aubmindlab/aragpt2-base",
            token=os.getenv("HF_TOKEN"),
            max_length=50,
            temperature=0.7,
        )
        response = chatbot(
            context,
            num_return_sequences=1,
            pad_token_id=50256
        )
        return response[0]['generated_text'].strip()  # إزالة المسافات الزائدة
    except Exception as e:
        logger.error(f"فشل توليد الرد: {str(e)}")
        return "حدث خطأ في توليد الرد."

async def text_to_speech(text: str) -> None:
    try:
        audio = tts_pipeline(text)
        sf.write("bot_response.wav", audio["audio"], 22050)  # تأكد من استخدام معدل العينة الصحيح
    except Exception as e:
        logger.error(f"فشل تحويل النص إلى صوت: {str(e)}")

# ===== دوال التفاعل مع المستخدم =====
async def start(update: Update, context):
    await update.message.reply_text("مرحبًا! أنا بوت الدردشة الصوتية الأنثوي 🎤\nأرسل لي رسالة صوتية وسأرد عليك بصوت أنثوي واضح.")

async def process_voice(update: Update, context):
    try:
        user_id = update.message.from_user.id
        voice_file = await update.message.voice.get_file()
        await voice_file.download_to_drive("user_voice.ogg")
        
        user_text = await speech_to_text("user_voice.ogg")
        if not user_text:
            await update.message.reply_text("لم أتمكن من فهم الصوت. يرجى المحاولة مرة أخرى.")
            return
        
        bot_response = await generate_response(user_text, str(user_id))
        await text_to speech(bot_response)
        
        if enhance_audio("bot_response.wav", "bot_response_enhanced.wav"):
            await update.message.reply_voice("bot_response_enhanced.wav")
        else:
            await update.message.reply_voice("bot_response.wav")
            
    except Exception as e:
        logger.error(f"خطأ غير متوقع: {str(e)}")
        await update.message.reply_text("⚠️ عذرًا، حدث خطأ في المعالجة.")

# ===== التشغيل الرئيسي =====
def run_bot():
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    
    application = ApplicationBuilder().token(os.getenv("TELEGRAM_TOKEN")).build()
    application.add_handler(CommandHandler("start", start))
    application.add_handler(MessageHandler(filters.VOICE, process_voice))
    
    application.run_polling(
        close_loop=False,
        stop_signals=[]
    )

if __name__ == "__main__":
    bot_thread = threading.Thread(target=run_bot, daemon=True)
    bot_thread.start()
    bot_thread.join()