Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,14 @@ from transformers import pipeline, AutoTokenizer, VitsModel
|
|
6 |
import torchaudio
|
7 |
import librosa
|
8 |
import soundfile as sf
|
|
|
|
|
9 |
|
10 |
# تهيئة النظام
|
11 |
-
logging.basicConfig(
|
|
|
|
|
|
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# تهيئة النماذج
|
@@ -20,61 +25,81 @@ asr_pipeline = pipeline(
|
|
20 |
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara")
|
21 |
tts_model = VitsModel.from_pretrained("facebook/mms-tts-ara")
|
22 |
|
23 |
-
|
24 |
-
|
25 |
try:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# توليد الرد
|
34 |
-
response = await generate_response(text)
|
35 |
-
|
36 |
-
# تحويل النص إلى صوت
|
37 |
-
await text_to_speech(response)
|
38 |
-
|
39 |
-
# إرسال الرد
|
40 |
-
await update.message.reply_voice("bot_response.wav")
|
41 |
-
|
42 |
except Exception as e:
|
43 |
-
logger.error(f"
|
44 |
-
|
45 |
|
46 |
-
# تحويل الصوت إلى نص
|
47 |
async def speech_to_text(audio_path):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
# توليد الردود
|
57 |
async def generate_response(text):
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
# تحويل النص إلى صوت
|
68 |
async def text_to_speech(text):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
# تهيئة التطبيق
|
78 |
if __name__ == "__main__":
|
79 |
TOKEN = os.getenv("TELEGRAM_TOKEN")
|
80 |
application = Application.builder().token(TOKEN).build()
|
|
|
6 |
import torchaudio
|
7 |
import librosa
|
8 |
import soundfile as sf
|
9 |
+
from pydub import AudioSegment
|
10 |
+
import numpy as np
|
11 |
|
12 |
# تهيئة النظام
|
13 |
+
logging.basicConfig(
|
14 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
15 |
+
level=logging.INFO
|
16 |
+
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
# تهيئة النماذج
|
|
|
25 |
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara")
|
26 |
tts_model = VitsModel.from_pretrained("facebook/mms-tts-ara")
|
27 |
|
28 |
+
def enhance_audio(input_path, output_path):
|
29 |
+
"""تحسين جودة الصوت باستخدام تأثيرات متقدمة"""
|
30 |
try:
|
31 |
+
audio = AudioSegment.from_wav(input_path)
|
32 |
+
audio = audio.low_pass_filter(3000)
|
33 |
+
audio = audio.high_pass_filter(100)
|
34 |
+
audio = audio.normalize()
|
35 |
+
audio = audio.fade_in(150).fade_out(150)
|
36 |
+
audio.export(output_path, format="wav")
|
37 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
except Exception as e:
|
39 |
+
logger.error(f"فشل تحسين الصوت: {str(e)}")
|
40 |
+
return False
|
41 |
|
|
|
42 |
async def speech_to_text(audio_path):
|
43 |
+
try:
|
44 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
45 |
+
sf.write("temp.wav", audio, sr)
|
46 |
+
result = asr_pipeline("temp.wav")
|
47 |
+
return result["text"]
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"فشل التعرف على الصوت: {str(e)}")
|
50 |
+
return ""
|
51 |
|
|
|
52 |
async def generate_response(text):
|
53 |
+
try:
|
54 |
+
chatbot = pipeline(
|
55 |
+
"text-generation",
|
56 |
+
model="aubmindlab/aragpt2-base"
|
57 |
+
)
|
58 |
+
response = chatbot(
|
59 |
+
text,
|
60 |
+
max_length=100,
|
61 |
+
num_return_sequences=1,
|
62 |
+
pad_token_id=50256
|
63 |
+
)
|
64 |
+
return response[0]['generated_text']
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"فشل توليد الرد: {str(e)}")
|
67 |
+
return "عذرًا، لم أفهم ما تقصد."
|
68 |
|
|
|
69 |
async def text_to_speech(text):
|
70 |
+
try:
|
71 |
+
inputs = tts_tokenizer(text, return_tensors="pt")
|
72 |
+
with torch.no_grad():
|
73 |
+
output = tts_model(**inputs)
|
74 |
+
waveform = output.waveform[0].numpy()
|
75 |
+
torchaudio.save("bot_response.wav", torch.Tensor(waveform), tts_model.config.sampling_rate)
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"فشل تحويل النص إلى صوت: {str(e)}")
|
78 |
+
|
79 |
+
async def process_voice(update: Update, context):
|
80 |
+
try:
|
81 |
+
user = update.message.from_user
|
82 |
+
logger.info(f"رسالة صوتية من {user.first_name}")
|
83 |
+
|
84 |
+
# تحميل الملف الصوتي
|
85 |
+
voice_file = await update.message.voice.get_file()
|
86 |
+
await voice_file.download_to_drive("user_voice.ogg")
|
87 |
+
|
88 |
+
# معالجة الصوت
|
89 |
+
user_text = await speech_to_text("user_voice.ogg")
|
90 |
+
bot_response = await generate_response(user_text)
|
91 |
+
await text_to_speech(bot_response)
|
92 |
+
|
93 |
+
# تحسين الجودة وإرسال الرد
|
94 |
+
if enhance_audio("bot_response.wav", "bot_response_enhanced.wav"):
|
95 |
+
await update.message.reply_voice("bot_response_enhanced.wav")
|
96 |
+
else:
|
97 |
+
await update.message.reply_voice("bot_response.wav")
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
logger.error(f"خطأ رئيسي: {str(e)}")
|
101 |
+
await update.message.reply_text("⚠️ حدث خطأ غير متوقع، الرجاء المحاولة لاحقًا.")
|
102 |
|
|
|
103 |
if __name__ == "__main__":
|
104 |
TOKEN = os.getenv("TELEGRAM_TOKEN")
|
105 |
application = Application.builder().token(TOKEN).build()
|