metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-large-unsupervised
widget:
- source_sentence: >-
What are the key components of the transparency provisions included in the
Consolidated Appropriations Act of 2021 regarding healthcare?
sentences:
- >-
The report includes information on legal proceedings under 'Note 13 —
Commitments and Contingencies — Litigation and Other Legal Matters'
which is a part of the consolidated financial statements
- >-
The Consolidated Appropriations Act of 2021 was signed into law in
December 2020 and contains further transparency provisions requiring
group health plans and health insurance issuers to report certain
prescription drug costs, overall spending on health services and
prescription drugs, and information about premiums and the impact of
rebates and other remuneration on premiums and out-of-pocket costs to
the Tri-Departments.
- In 2023, the company recorded other operating charges of $1,951 million.
- source_sentence: >-
What technology does the Tax Advisor use and for what purpose in Intuit's
offerings?
sentences:
- >-
In 2023, Goldman Sachs' investments in funds at NAV primarily included
firm-sponsored private equity, credit, real estate, and hedge funds.
These funds are involved in various types of investments such as
leveraged buyouts, recapitalizations, growth investments, and distressed
investments for private equity, while credit funds are focused on
providing private high-yield capital for leveraged and management buyout
transactions. Real estate funds invest globally in real estate assets,
and hedge funds adopt a fundamental bottom-up investment approach.
- >-
Using AI technologies, our Tax Advisor offering leverages information
generated from our ProConnect Tax Online and Lacerte offerings to enable
year-round tax planning services and communicate tax savings strategies
to clients.
- >-
'Note 13 — Commitments and Contingencies' provides details about
litigation and other legal matters in an Annual Report on Form 10-K.
- source_sentence: What was the net revenue for the Data Center segment in 2023?
sentences:
- >-
Data Center net revenue of $6.5 billion in 2023 increased by 7%,
compared to net revenue of $6.0 billion in 2022.
- >-
Under its Class 2 insurance license, Caterpillar Insurance Co. Ltd.
insures its parent and affiliates for general liability, property, auto
liability and cargo. It also provides reinsurance to CaterThe pillar
Insurance Company under a quota share reinsurance agreement for its
contractual liability and contractors’ equipment programs in the United
States.
- >-
Schwab’s funding of these remaining commitments is dependent upon the
occurrence of certain conditions, and Schwab expects to pay
substantially all of these commitments between 2024 and 2027.
- source_sentence: >-
What are the three principles of liquidity risk management at Goldman
Sachs?
sentences:
- >-
The Company determines if an arrangement is a lease at inception and
classifies its leases at commencement. Operating leases are included in
operating lease right-of-use ("ROU") assets and current and noncurrent
operating lease liabilities on the Company’s consolidated balance
sheets.
- >-
Garmin Ltd. reported a net income of $1,289,636 for the fiscal year
ended December 30, 2023.
- >-
Goldman Sachs manages liquidity risk based on three principles: 1) hold
sufficient excess liquidity in the form of GCLA to cover outflows during
a stressed period, 2) maintain appropriate Asset-Liability Management,
and 3) maintain a viable Contingency Funding Plan.
- source_sentence: >-
What was the total cost and expenses reported by Berkshire Hathaway for
the year ended December 31, 2023?
sentences:
- Total costs and expenses | | 321,144 | | | 266,484 | | | 243,752
- >-
Qulipta (atogepant) is a calcitonin gene-related peptide receptor
antagonist indicated for the preventive treatment of episodic and
chronic migraine in adults. Qulipta is commercialized in the United
States and Canada and is approved in the European Union under the brand
name Aquipta.
- >-
Item 3 'Legal Proceedings' is integrated by reference to other parts
including Note 22 — 'Environmental and legal matters' and Part II, Item
8.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: E5 unsupervised Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7271428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.85
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7271428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2833333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7271428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.85
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.822517236613446
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7936921768707483
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7973883589026711
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7271428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7271428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28190476190476194
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571429
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7271428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8223709830528422
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.793145691609977
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7966990460475021
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.72
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.72
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28190476190476194
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571424
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.72
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8159991941699124
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7869370748299319
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7906967878713818
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7085714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7085714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2761904761904762
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7085714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8073517667504667
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7777108843537414
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7815591417851651
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6757142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8457142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6757142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16914285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6757142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8457142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7861731335824387
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7542681405895693
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7588497811523153
name: Cosine Map@100
E5 unsupervised Financial Matryoshka
This is a sentence-transformers model finetuned from intfloat/e5-large-unsupervised on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-large-unsupervised
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("schawla2/e5-unsupervised-financial-matryoshka")
# Run inference
sentences = [
'What was the total cost and expenses reported by Berkshire Hathaway for the year ended December 31, 2023?',
'Total costs and expenses | | 321,144 | | | 266,484 | | | 243,752',
'Qulipta (atogepant) is a calcitonin gene-related peptide receptor antagonist indicated for the preventive treatment of episodic and chronic migraine in adults. Qulipta is commercialized in the United States and Canada and is approved in the European Union under the brand name Aquipta.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7271 | 0.7271 | 0.72 | 0.7086 | 0.6757 |
cosine_accuracy@3 | 0.85 | 0.8457 | 0.8457 | 0.8286 | 0.8186 |
cosine_accuracy@5 | 0.8786 | 0.88 | 0.8714 | 0.8729 | 0.8457 |
cosine_accuracy@10 | 0.9114 | 0.9129 | 0.9057 | 0.8986 | 0.8843 |
cosine_precision@1 | 0.7271 | 0.7271 | 0.72 | 0.7086 | 0.6757 |
cosine_precision@3 | 0.2833 | 0.2819 | 0.2819 | 0.2762 | 0.2729 |
cosine_precision@5 | 0.1757 | 0.176 | 0.1743 | 0.1746 | 0.1691 |
cosine_precision@10 | 0.0911 | 0.0913 | 0.0906 | 0.0899 | 0.0884 |
cosine_recall@1 | 0.7271 | 0.7271 | 0.72 | 0.7086 | 0.6757 |
cosine_recall@3 | 0.85 | 0.8457 | 0.8457 | 0.8286 | 0.8186 |
cosine_recall@5 | 0.8786 | 0.88 | 0.8714 | 0.8729 | 0.8457 |
cosine_recall@10 | 0.9114 | 0.9129 | 0.9057 | 0.8986 | 0.8843 |
cosine_ndcg@10 | 0.8225 | 0.8224 | 0.816 | 0.8074 | 0.7862 |
cosine_mrr@10 | 0.7937 | 0.7931 | 0.7869 | 0.7777 | 0.7543 |
cosine_map@100 | 0.7974 | 0.7967 | 0.7907 | 0.7816 | 0.7588 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 8 tokens
- mean: 20.8 tokens
- max: 51 tokens
- min: 7 tokens
- mean: 45.24 tokens
- max: 326 tokens
- Samples:
anchor positive How many full-time employees did Microsoft report as of June 30, 2023?
As of June 30, 2023, we employed approximately 221,000 people on a full-time basis, 120,000 in the U.S. and 101,000 internationally.
What was the total amount CSC paid for Series G preferred stock repurchases in 2023?
In 2023, CSC repurchased 42,036 depositary shares representing interests in Series G preferred stock for a total amount of $42 million.
What does Note 13 in the Annual Report on Form 10-K discuss?
For a discussion of legal and other proceedings in which we are involved, see Note 13 - Commitments and Contingencies in the Notes to Consolidated Financial Statements.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2030 | 10 | 9.3166 | - | - | - | - | - |
0.4061 | 20 | 3.7163 | - | - | - | - | - |
0.6091 | 30 | 2.8216 | - | - | - | - | - |
0.8122 | 40 | 1.9313 | - | - | - | - | - |
1.0 | 50 | 1.5613 | 0.8230 | 0.8237 | 0.8153 | 0.8036 | 0.7771 |
1.2030 | 60 | 1.0926 | - | - | - | - | - |
1.4061 | 70 | 0.3367 | - | - | - | - | - |
1.6091 | 80 | 0.3958 | - | - | - | - | - |
1.8122 | 90 | 0.6527 | - | - | - | - | - |
2.0 | 100 | 0.4483 | 0.8202 | 0.8209 | 0.8118 | 0.8033 | 0.7792 |
2.2030 | 110 | 0.1823 | - | - | - | - | - |
2.4061 | 120 | 0.0494 | - | - | - | - | - |
2.6091 | 130 | 0.1204 | - | - | - | - | - |
2.8122 | 140 | 0.2021 | - | - | - | - | - |
3.0 | 150 | 0.2088 | 0.8211 | 0.8213 | 0.8148 | 0.8064 | 0.7825 |
3.2030 | 160 | 0.062 | - | - | - | - | - |
3.4061 | 170 | 0.022 | - | - | - | - | - |
3.6091 | 180 | 0.0654 | - | - | - | - | - |
3.8122 | 190 | 0.1481 | - | - | - | - | - |
3.934 | 196 | - | 0.8225 | 0.8224 | 0.816 | 0.8074 | 0.7862 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}