File size: 30,879 Bytes
dd050fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-large-unsupervised
widget:
- source_sentence: What are the key components of the transparency provisions included
    in the Consolidated Appropriations Act of 2021 regarding healthcare?
  sentences:
  - The report includes information on legal proceedings under 'Note 13 — Commitments

    and Contingencies — Litigation and Other Legal Matters' which is a part of the
    consolidated financial statements
  - The Consolidated Appropriations Act of 2021 was signed into law in December 2020
    and contains further transparency provisions requiring group health plans and
    health insurance issuers to report certain prescription drug costs, overall spending
    on health services and prescription drugs, and information about premiums and
    the impact of rebates and other remuneration on premiums and out-of-pocket costs
    to the Tri-Departments.
  - In 2023, the company recorded other operating charges of $1,951 million.
- source_sentence: What technology does the Tax Advisor use and for what purpose in
    Intuit's offerings?
  sentences:
  - In 2023, Goldman Sachs' investments in funds at NAV primarily included firm-sponsored
    private equity, credit, real estate, and hedge funds. These funds are involved
    in various types of investments such as leveraged buyouts, recapitalizations,
    growth investments, and distressed investments for private equity, while credit
    funds are focused on providing private high-yield capital for leveraged and management
    buyout transactions. Real estate funds invest globally in real estate assets,
    and hedge funds adopt a fundamental bottom-up investment approach.
  - Using AI technologies, our Tax Advisor offering leverages information generated
    from our ProConnect Tax Online and Lacerte offerings to enable year-round tax
    planning services and communicate tax savings strategies to clients.
  - '''Note 13 — Commitments and Contingencies'' provides details about litigation

    and other legal matters in an Annual Report on Form 10-K.'
- source_sentence: What was the net revenue for the Data Center segment in 2023?
  sentences:
  - Data Center net revenue of $6.5 billion in 2023 increased by 7%, compared to net
    revenue of $6.0 billion in 2022.
  - Under its Class 2 insurance license, Caterpillar Insurance Co. Ltd. insures its
    parent and affiliates for general liability, property, auto liability and cargo.
    It also provides reinsurance to CaterThe pillar Insurance Company under a quota
    share reinsurance agreement for its contractual liability and contractors’ equipment
    programs in the United States.
  - Schwab’s funding of these remaining commitments is dependent upon the occurrence
    of certain conditions, and Schwab expects to pay substantially all of these commitments
    between 2024 and 2027.
- source_sentence: What are the three principles of liquidity risk management at Goldman
    Sachs?
  sentences:
  - The Company determines if an arrangement is a lease at inception and classifies
    its leases at commencement. Operating leases are included in operating lease right-of-use
    ("ROU") assets and current and noncurrent operating lease liabilities on the Company’s
    consolidated balance sheets.
  - Garmin Ltd. reported a net income of $1,289,636 for the fiscal year ended December
    30, 2023.
  - 'Goldman Sachs manages liquidity risk based on three principles: 1) hold sufficient

    excess liquidity in the form of GCLA to cover outflows during a stressed period,

    2) maintain appropriate Asset-Liability Management, and 3) maintain a viable Contingency

    Funding Plan.'
- source_sentence: What was the total cost and expenses reported by Berkshire Hathaway
    for the year ended December 31, 2023?
  sentences:
  - Total costs and expenses | | 321,144 | | | 266,484 | | | 243,752
  - Qulipta (atogepant) is a calcitonin gene-related peptide receptor antagonist indicated
    for the preventive treatment of episodic and chronic migraine in adults. Qulipta
    is commercialized in the United States and Canada and is approved in the European
    Union under the brand name Aquipta.
  - Item 3 'Legal Proceedings' is integrated by reference to other parts including
    Note 22  'Environmental and legal matters' and Part II, Item 8.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: E5 unsupervised Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7271428571428571
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.85
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8785714285714286
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9114285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7271428571428571
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2833333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17571428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09114285714285714
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7271428571428571
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.85
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8785714285714286
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9114285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.822517236613446
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7936921768707483
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7973883589026711
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7271428571428571
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8457142857142858
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.88
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9128571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7271428571428571
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28190476190476194
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.176
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09128571428571429
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7271428571428571
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8457142857142858
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.88
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9128571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8223709830528422
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.793145691609977
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7966990460475021
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.72
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8457142857142858
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8714285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9057142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.72
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28190476190476194
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17428571428571424
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09057142857142855
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.72
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8457142857142858
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8714285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9057142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8159991941699124
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7869370748299319
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7906967878713818
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7085714285714285
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8285714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8728571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8985714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7085714285714285
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2761904761904762
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17457142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08985714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7085714285714285
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8285714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8728571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8985714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8073517667504667
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7777108843537414
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7815591417851651
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6757142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8185714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8457142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8842857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6757142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27285714285714285
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16914285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08842857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6757142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8185714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8457142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8842857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7861731335824387
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7542681405895693
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7588497811523153
      name: Cosine Map@100
---


# E5 unsupervised Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-large-unsupervised](https://huggingface.co/intfloat/e5-large-unsupervised) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-large-unsupervised](https://huggingface.co/intfloat/e5-large-unsupervised) <!-- at revision 15af9288f69a6291f37bfb89b47e71abc747b206 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("schawla2/e5-unsupervised-financial-matryoshka")

# Run inference

sentences = [

    'What was the total cost and expenses reported by Berkshire Hathaway for the year ended December 31, 2023?',

    'Total costs and expenses | | 321,144 | | | 266,484 | | | 243,752',

    'Qulipta (atogepant) is a calcitonin gene-related peptide receptor antagonist indicated for the preventive treatment of episodic and chronic migraine in adults. Qulipta is commercialized in the United States and Canada and is approved in the European Union under the brand name Aquipta.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 1024]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256   | dim_128    | dim_64     |

|:--------------------|:-----------|:-----------|:----------|:-----------|:-----------|

| cosine_accuracy@1   | 0.7271     | 0.7271     | 0.72      | 0.7086     | 0.6757     |
| cosine_accuracy@3   | 0.85       | 0.8457     | 0.8457    | 0.8286     | 0.8186     |

| cosine_accuracy@5   | 0.8786     | 0.88       | 0.8714    | 0.8729     | 0.8457     |
| cosine_accuracy@10  | 0.9114     | 0.9129     | 0.9057    | 0.8986     | 0.8843     |

| cosine_precision@1  | 0.7271     | 0.7271     | 0.72      | 0.7086     | 0.6757     |
| cosine_precision@3  | 0.2833     | 0.2819     | 0.2819    | 0.2762     | 0.2729     |

| cosine_precision@5  | 0.1757     | 0.176      | 0.1743    | 0.1746     | 0.1691     |
| cosine_precision@10 | 0.0911     | 0.0913     | 0.0906    | 0.0899     | 0.0884     |

| cosine_recall@1     | 0.7271     | 0.7271     | 0.72      | 0.7086     | 0.6757     |
| cosine_recall@3     | 0.85       | 0.8457     | 0.8457    | 0.8286     | 0.8186     |

| cosine_recall@5     | 0.8786     | 0.88       | 0.8714    | 0.8729     | 0.8457     |
| cosine_recall@10    | 0.9114     | 0.9129     | 0.9057    | 0.8986     | 0.8843     |

| **cosine_ndcg@10**  | **0.8225** | **0.8224** | **0.816** | **0.8074** | **0.7862** |

| cosine_mrr@10       | 0.7937     | 0.7931     | 0.7869    | 0.7777     | 0.7543     |
| cosine_map@100      | 0.7974     | 0.7967     | 0.7907    | 0.7816     | 0.7588     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### json



* Dataset: json

* Size: 6,300 training samples

* Columns: <code>anchor</code> and <code>positive</code>

* Approximate statistics based on the first 1000 samples:

  |         | anchor                                                                           | positive                                                                           |

  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|

  | type    | string                                                                           | string                                                                             |

  | details | <ul><li>min: 8 tokens</li><li>mean: 20.8 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 45.24 tokens</li><li>max: 326 tokens</li></ul> |

* Samples:

  | anchor                                                                                            | positive                                                                                                                                                                              |

  |:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>How many full-time employees did Microsoft report as of June 30, 2023?</code>               | <code>As of June 30, 2023, we employed approximately 221,000 people on a full-time basis, 120,000 in the U.S. and 101,000 internationally.</code>                                     |

  | <code>What was the total amount CSC paid for Series G preferred stock repurchases in 2023?</code> | <code>In 2023, CSC repurchased 42,036 depositary shares representing interests in Series G preferred stock for a total amount of $42 million.</code>                                  |

  | <code>What does Note 13 in the Annual Report on Form 10-K discuss?</code>                         | <code>For a discussion of legal and other proceedings in which we are involved, see Note 13 - Commitments and Contingencies in the Notes to Consolidated Financial Statements.</code> |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [
          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch     | Step    | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |

|:---------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|

| 0.2030    | 10      | 9.3166        | -                      | -                      | -                      | -                      | -                     |

| 0.4061    | 20      | 3.7163        | -                      | -                      | -                      | -                      | -                     |

| 0.6091    | 30      | 2.8216        | -                      | -                      | -                      | -                      | -                     |

| 0.8122    | 40      | 1.9313        | -                      | -                      | -                      | -                      | -                     |

| 1.0       | 50      | 1.5613        | 0.8230                 | 0.8237                 | 0.8153                 | 0.8036                 | 0.7771                |

| 1.2030    | 60      | 1.0926        | -                      | -                      | -                      | -                      | -                     |

| 1.4061    | 70      | 0.3367        | -                      | -                      | -                      | -                      | -                     |

| 1.6091    | 80      | 0.3958        | -                      | -                      | -                      | -                      | -                     |

| 1.8122    | 90      | 0.6527        | -                      | -                      | -                      | -                      | -                     |

| 2.0       | 100     | 0.4483        | 0.8202                 | 0.8209                 | 0.8118                 | 0.8033                 | 0.7792                |

| 2.2030    | 110     | 0.1823        | -                      | -                      | -                      | -                      | -                     |

| 2.4061    | 120     | 0.0494        | -                      | -                      | -                      | -                      | -                     |

| 2.6091    | 130     | 0.1204        | -                      | -                      | -                      | -                      | -                     |

| 2.8122    | 140     | 0.2021        | -                      | -                      | -                      | -                      | -                     |

| 3.0       | 150     | 0.2088        | 0.8211                 | 0.8213                 | 0.8148                 | 0.8064                 | 0.7825                |

| 3.2030    | 160     | 0.062         | -                      | -                      | -                      | -                      | -                     |

| 3.4061    | 170     | 0.022         | -                      | -                      | -                      | -                      | -                     |

| 3.6091    | 180     | 0.0654        | -                      | -                      | -                      | -                      | -                     |

| 3.8122    | 190     | 0.1481        | -                      | -                      | -                      | -                      | -                     |

| **3.934** | **196** | **-**         | **0.8225**             | **0.8224**             | **0.816**              | **0.8074**             | **0.7862**            |



* The bold row denotes the saved checkpoint.



### Framework Versions

- Python: 3.10.16

- Sentence Transformers: 3.3.1

- Transformers: 4.48.1

- PyTorch: 2.5.1+cu124

- Accelerate: 1.3.0

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->