E5 unsupervised Financial Matryoshka
This is a sentence-transformers model finetuned from intfloat/e5-large-unsupervised on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-large-unsupervised
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("schawla2/e5-unsupervised-financial-matryoshka")
# Run inference
sentences = [
'What was the total cost and expenses reported by Berkshire Hathaway for the year ended December 31, 2023?',
'Total costs and expenses | | 321,144 | | | 266,484 | | | 243,752',
'Qulipta (atogepant) is a calcitonin gene-related peptide receptor antagonist indicated for the preventive treatment of episodic and chronic migraine in adults. Qulipta is commercialized in the United States and Canada and is approved in the European Union under the brand name Aquipta.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7271 | 0.7271 | 0.72 | 0.7086 | 0.6757 |
cosine_accuracy@3 | 0.85 | 0.8457 | 0.8457 | 0.8286 | 0.8186 |
cosine_accuracy@5 | 0.8786 | 0.88 | 0.8714 | 0.8729 | 0.8457 |
cosine_accuracy@10 | 0.9114 | 0.9129 | 0.9057 | 0.8986 | 0.8843 |
cosine_precision@1 | 0.7271 | 0.7271 | 0.72 | 0.7086 | 0.6757 |
cosine_precision@3 | 0.2833 | 0.2819 | 0.2819 | 0.2762 | 0.2729 |
cosine_precision@5 | 0.1757 | 0.176 | 0.1743 | 0.1746 | 0.1691 |
cosine_precision@10 | 0.0911 | 0.0913 | 0.0906 | 0.0899 | 0.0884 |
cosine_recall@1 | 0.7271 | 0.7271 | 0.72 | 0.7086 | 0.6757 |
cosine_recall@3 | 0.85 | 0.8457 | 0.8457 | 0.8286 | 0.8186 |
cosine_recall@5 | 0.8786 | 0.88 | 0.8714 | 0.8729 | 0.8457 |
cosine_recall@10 | 0.9114 | 0.9129 | 0.9057 | 0.8986 | 0.8843 |
cosine_ndcg@10 | 0.8225 | 0.8224 | 0.816 | 0.8074 | 0.7862 |
cosine_mrr@10 | 0.7937 | 0.7931 | 0.7869 | 0.7777 | 0.7543 |
cosine_map@100 | 0.7974 | 0.7967 | 0.7907 | 0.7816 | 0.7588 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 8 tokens
- mean: 20.8 tokens
- max: 51 tokens
- min: 7 tokens
- mean: 45.24 tokens
- max: 326 tokens
- Samples:
anchor positive How many full-time employees did Microsoft report as of June 30, 2023?
As of June 30, 2023, we employed approximately 221,000 people on a full-time basis, 120,000 in the U.S. and 101,000 internationally.
What was the total amount CSC paid for Series G preferred stock repurchases in 2023?
In 2023, CSC repurchased 42,036 depositary shares representing interests in Series G preferred stock for a total amount of $42 million.
What does Note 13 in the Annual Report on Form 10-K discuss?
For a discussion of legal and other proceedings in which we are involved, see Note 13 - Commitments and Contingencies in the Notes to Consolidated Financial Statements.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2030 | 10 | 9.3166 | - | - | - | - | - |
0.4061 | 20 | 3.7163 | - | - | - | - | - |
0.6091 | 30 | 2.8216 | - | - | - | - | - |
0.8122 | 40 | 1.9313 | - | - | - | - | - |
1.0 | 50 | 1.5613 | 0.8230 | 0.8237 | 0.8153 | 0.8036 | 0.7771 |
1.2030 | 60 | 1.0926 | - | - | - | - | - |
1.4061 | 70 | 0.3367 | - | - | - | - | - |
1.6091 | 80 | 0.3958 | - | - | - | - | - |
1.8122 | 90 | 0.6527 | - | - | - | - | - |
2.0 | 100 | 0.4483 | 0.8202 | 0.8209 | 0.8118 | 0.8033 | 0.7792 |
2.2030 | 110 | 0.1823 | - | - | - | - | - |
2.4061 | 120 | 0.0494 | - | - | - | - | - |
2.6091 | 130 | 0.1204 | - | - | - | - | - |
2.8122 | 140 | 0.2021 | - | - | - | - | - |
3.0 | 150 | 0.2088 | 0.8211 | 0.8213 | 0.8148 | 0.8064 | 0.7825 |
3.2030 | 160 | 0.062 | - | - | - | - | - |
3.4061 | 170 | 0.022 | - | - | - | - | - |
3.6091 | 180 | 0.0654 | - | - | - | - | - |
3.8122 | 190 | 0.1481 | - | - | - | - | - |
3.934 | 196 | - | 0.8225 | 0.8224 | 0.816 | 0.8074 | 0.7862 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for schawla2/e5-unsupervised-financial-matryoshka
Base model
intfloat/e5-large-unsupervisedEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.727
- Cosine Accuracy@3 on dim 768self-reported0.850
- Cosine Accuracy@5 on dim 768self-reported0.879
- Cosine Accuracy@10 on dim 768self-reported0.911
- Cosine Precision@1 on dim 768self-reported0.727
- Cosine Precision@3 on dim 768self-reported0.283
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.727
- Cosine Recall@3 on dim 768self-reported0.850