|
--- |
|
library_name: pytorch |
|
license: agpl-3.0 |
|
tags: |
|
- real_time |
|
- android |
|
pipeline_tag: object-detection |
|
|
|
--- |
|
|
|
 |
|
|
|
# Yolo-v5: Optimized for Mobile Deployment |
|
## Real-time object detection optimized for mobile and edge |
|
|
|
|
|
YoloV5 is a machine learning model that predicts bounding boxes and classes of objects in an image. |
|
|
|
This model is an implementation of Yolo-v5 found [here](https://github.com/ultralytics/yolov5). |
|
|
|
|
|
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov5). |
|
|
|
### Model Details |
|
|
|
- **Model Type:** Object detection |
|
- **Model Stats:** |
|
- Model checkpoint: YoloV5-M |
|
- Input resolution: 640x640 |
|
- Number of parameters: 21.2M |
|
- Model size: 81.1 MB |
|
|
|
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 23.747 ms | 6 - 38 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.883 ms | 6 - 8 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 27.816 ms | 1 - 119 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 18.188 ms | 5 - 104 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 16.767 ms | 5 - 25 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 21.418 ms | 7 - 134 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 16.687 ms | 5 - 82 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 15.715 ms | 5 - 128 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 20.519 ms | 5 - 120 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 370.263 ms | 1 - 74 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 364.102 ms | 1 - 10 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 23.754 ms | 6 - 39 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 22.141 ms | 5 - 7 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 34.771 ms | 0 - 74 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 30.88 ms | 1 - 11 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 34.864 ms | 6 - 87 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 42.293 ms | 5 - 44 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.469 ms | 5 - 5 MB | FP16 | NPU | -- | |
|
| Yolo-v5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 28.022 ms | 39 - 39 MB | FP16 | NPU | -- | |
|
|
|
|
|
|
|
|
|
## License |
|
* The license for the original implementation of Yolo-v5 can be found |
|
[here](https://github.com/ultralytics/yolov5?tab=AGPL-3.0-1-ov-file#readme). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/yolov5?tab=AGPL-3.0-1-ov-file#readme) |
|
|
|
|
|
|
|
## References |
|
* [Source Model Implementation](https://github.com/ultralytics/yolov5) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
## Usage and Limitations |
|
|
|
Model may not be used for or in connection with any of the following applications: |
|
|
|
- Accessing essential private and public services and benefits; |
|
- Administration of justice and democratic processes; |
|
- Assessing or recognizing the emotional state of a person; |
|
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; |
|
- Education and vocational training; |
|
- Employment and workers management; |
|
- Exploitation of the vulnerabilities of persons resulting in harmful behavior; |
|
- General purpose social scoring; |
|
- Law enforcement; |
|
- Management and operation of critical infrastructure; |
|
- Migration, asylum and border control management; |
|
- Predictive policing; |
|
- Real-time remote biometric identification in public spaces; |
|
- Recommender systems of social media platforms; |
|
- Scraping of facial images (from the internet or otherwise); and/or |
|
- Subliminal manipulation |
|
|