File size: 4,640 Bytes
0be84dd
 
12119a4
0be84dd
 
 
12119a4
0be84dd
 
 
 
 
 
 
 
 
 
 
 
 
 
12119a4
0be84dd
 
 
 
 
 
 
 
 
 
 
 
84612ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0be84dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12119a4
0be84dd
 
12119a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: pytorch
license: agpl-3.0
tags:
- real_time
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov5/web-assets/model_demo.png)

# Yolo-v5: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge


YoloV5 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v5 found [here](https://github.com/ultralytics/yolov5).


 More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov5).

### Model Details

- **Model Type:** Object detection
- **Model Stats:**
  - Model checkpoint: YoloV5-M
  - Input resolution: 640x640
  - Number of parameters: 21.2M
  - Model size: 81.1 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 23.747 ms | 6 - 38 MB | FP16 | NPU | -- |
| Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.883 ms | 6 - 8 MB | FP16 | NPU | -- |
| Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 27.816 ms | 1 - 119 MB | FP16 | NPU | -- |
| Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 18.188 ms | 5 - 104 MB | FP16 | NPU | -- |
| Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 16.767 ms | 5 - 25 MB | FP16 | NPU | -- |
| Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 21.418 ms | 7 - 134 MB | FP16 | NPU | -- |
| Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 16.687 ms | 5 - 82 MB | FP16 | NPU | -- |
| Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 15.715 ms | 5 - 128 MB | FP16 | NPU | -- |
| Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 20.519 ms | 5 - 120 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 370.263 ms | 1 - 74 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 364.102 ms | 1 - 10 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 23.754 ms | 6 - 39 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 22.141 ms | 5 - 7 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 34.771 ms | 0 - 74 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 30.88 ms | 1 - 11 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 34.864 ms | 6 - 87 MB | FP16 | NPU | -- |
| Yolo-v5 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 42.293 ms | 5 - 44 MB | FP16 | NPU | -- |
| Yolo-v5 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.469 ms | 5 - 5 MB | FP16 | NPU | -- |
| Yolo-v5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 28.022 ms | 39 - 39 MB | FP16 | NPU | -- |




## License
* The license for the original implementation of Yolo-v5 can be found
  [here](https://github.com/ultralytics/yolov5?tab=AGPL-3.0-1-ov-file#readme).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/yolov5?tab=AGPL-3.0-1-ov-file#readme)



## References
* [Source Model Implementation](https://github.com/ultralytics/yolov5)



## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).

## Usage and Limitations

Model may not be used for or in connection with any of the following applications:

- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation