--- library_name: pytorch license: agpl-3.0 tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov5/web-assets/model_demo.png) # Yolo-v5: Optimized for Mobile Deployment ## Real-time object detection optimized for mobile and edge YoloV5 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is an implementation of Yolo-v5 found [here](https://github.com/ultralytics/yolov5). More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov5). ### Model Details - **Model Type:** Object detection - **Model Stats:** - Model checkpoint: YoloV5-M - Input resolution: 640x640 - Number of parameters: 21.2M - Model size: 81.1 MB | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 23.747 ms | 6 - 38 MB | FP16 | NPU | -- | | Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.883 ms | 6 - 8 MB | FP16 | NPU | -- | | Yolo-v5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 27.816 ms | 1 - 119 MB | FP16 | NPU | -- | | Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 18.188 ms | 5 - 104 MB | FP16 | NPU | -- | | Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 16.767 ms | 5 - 25 MB | FP16 | NPU | -- | | Yolo-v5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 21.418 ms | 7 - 134 MB | FP16 | NPU | -- | | Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 16.687 ms | 5 - 82 MB | FP16 | NPU | -- | | Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 15.715 ms | 5 - 128 MB | FP16 | NPU | -- | | Yolo-v5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 20.519 ms | 5 - 120 MB | FP16 | NPU | -- | | Yolo-v5 | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 370.263 ms | 1 - 74 MB | FP16 | NPU | -- | | Yolo-v5 | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 364.102 ms | 1 - 10 MB | FP16 | NPU | -- | | Yolo-v5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 23.754 ms | 6 - 39 MB | FP16 | NPU | -- | | Yolo-v5 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 22.141 ms | 5 - 7 MB | FP16 | NPU | -- | | Yolo-v5 | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 34.771 ms | 0 - 74 MB | FP16 | NPU | -- | | Yolo-v5 | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 30.88 ms | 1 - 11 MB | FP16 | NPU | -- | | Yolo-v5 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 34.864 ms | 6 - 87 MB | FP16 | NPU | -- | | Yolo-v5 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 42.293 ms | 5 - 44 MB | FP16 | NPU | -- | | Yolo-v5 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.469 ms | 5 - 5 MB | FP16 | NPU | -- | | Yolo-v5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 28.022 ms | 39 - 39 MB | FP16 | NPU | -- | ## License * The license for the original implementation of Yolo-v5 can be found [here](https://github.com/ultralytics/yolov5?tab=AGPL-3.0-1-ov-file#readme). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/yolov5?tab=AGPL-3.0-1-ov-file#readme) ## References * [Source Model Implementation](https://github.com/ultralytics/yolov5) ## Community * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com). ## Usage and Limitations Model may not be used for or in connection with any of the following applications: - Accessing essential private and public services and benefits; - Administration of justice and democratic processes; - Assessing or recognizing the emotional state of a person; - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; - Education and vocational training; - Employment and workers management; - Exploitation of the vulnerabilities of persons resulting in harmful behavior; - General purpose social scoring; - Law enforcement; - Management and operation of critical infrastructure; - Migration, asylum and border control management; - Predictive policing; - Real-time remote biometric identification in public spaces; - Recommender systems of social media platforms; - Scraping of facial images (from the internet or otherwise); and/or - Subliminal manipulation