gokuls's picture
End of training
fbb4384
metadata
license: apache-2.0
base_model: google/bert_uncased_L-12_H-256_A-4
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-12_H-256_A-4_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8617806197737334

bert_uncased_L-12_H-256_A-4_massive

This model is a fine-tuned version of google/bert_uncased_L-12_H-256_A-4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6679
  • Accuracy: 0.8618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.3504 1.0 180 2.5753 0.5726
2.2201 2.0 360 1.7801 0.7280
1.5878 3.0 540 1.3596 0.7747
1.218 4.0 720 1.1112 0.8032
0.9707 5.0 900 0.9673 0.8111
0.7935 6.0 1080 0.8617 0.8313
0.6704 7.0 1260 0.8082 0.8455
0.572 8.0 1440 0.7746 0.8446
0.5015 9.0 1620 0.7387 0.8500
0.4434 10.0 1800 0.7024 0.8534
0.3947 11.0 1980 0.7013 0.8549
0.362 12.0 2160 0.6884 0.8544
0.3365 13.0 2340 0.6821 0.8549
0.3172 14.0 2520 0.6704 0.8593
0.3067 15.0 2700 0.6679 0.8618

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1