bert_uncased_L-12_H-256_A-4_massive

This model is a fine-tuned version of google/bert_uncased_L-12_H-256_A-4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6679
  • Accuracy: 0.8618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.3504 1.0 180 2.5753 0.5726
2.2201 2.0 360 1.7801 0.7280
1.5878 3.0 540 1.3596 0.7747
1.218 4.0 720 1.1112 0.8032
0.9707 5.0 900 0.9673 0.8111
0.7935 6.0 1080 0.8617 0.8313
0.6704 7.0 1260 0.8082 0.8455
0.572 8.0 1440 0.7746 0.8446
0.5015 9.0 1620 0.7387 0.8500
0.4434 10.0 1800 0.7024 0.8534
0.3947 11.0 1980 0.7013 0.8549
0.362 12.0 2160 0.6884 0.8544
0.3365 13.0 2340 0.6821 0.8549
0.3172 14.0 2520 0.6704 0.8593
0.3067 15.0 2700 0.6679 0.8618

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokuls/bert_uncased_L-12_H-256_A-4_massive

Finetuned
(2)
this model

Evaluation results