gokuls commited on
Commit
fbb4384
·
1 Parent(s): 873340a

End of training

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/bert_uncased_L-12_H-256_A-4
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: bert_uncased_L-12_H-256_A-4_massive
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: massive
18
+ type: massive
19
+ config: en-US
20
+ split: validation
21
+ args: en-US
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8617806197737334
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # bert_uncased_L-12_H-256_A-4_massive
32
+
33
+ This model is a fine-tuned version of [google/bert_uncased_L-12_H-256_A-4](https://huggingface.co/google/bert_uncased_L-12_H-256_A-4) on the massive dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6679
36
+ - Accuracy: 0.8618
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 33
59
+ - distributed_type: multi-GPU
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 15
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 3.3504 | 1.0 | 180 | 2.5753 | 0.5726 |
69
+ | 2.2201 | 2.0 | 360 | 1.7801 | 0.7280 |
70
+ | 1.5878 | 3.0 | 540 | 1.3596 | 0.7747 |
71
+ | 1.218 | 4.0 | 720 | 1.1112 | 0.8032 |
72
+ | 0.9707 | 5.0 | 900 | 0.9673 | 0.8111 |
73
+ | 0.7935 | 6.0 | 1080 | 0.8617 | 0.8313 |
74
+ | 0.6704 | 7.0 | 1260 | 0.8082 | 0.8455 |
75
+ | 0.572 | 8.0 | 1440 | 0.7746 | 0.8446 |
76
+ | 0.5015 | 9.0 | 1620 | 0.7387 | 0.8500 |
77
+ | 0.4434 | 10.0 | 1800 | 0.7024 | 0.8534 |
78
+ | 0.3947 | 11.0 | 1980 | 0.7013 | 0.8549 |
79
+ | 0.362 | 12.0 | 2160 | 0.6884 | 0.8544 |
80
+ | 0.3365 | 13.0 | 2340 | 0.6821 | 0.8549 |
81
+ | 0.3172 | 14.0 | 2520 | 0.6704 | 0.8593 |
82
+ | 0.3067 | 15.0 | 2700 | 0.6679 | 0.8618 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.34.0
88
+ - Pytorch 1.14.0a0+410ce96
89
+ - Datasets 2.14.5
90
+ - Tokenizers 0.14.1