bge-m3-ru-ostap / README.md
fitlemon's picture
Add new SentenceTransformer model
cae49e5 verified
metadata
language:
  - ru
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:904
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3
widget:
  - source_sentence: Какой у тебя план на будущее?
    sentences:
      - >-
        Работа — это скучно, если не считать, что Уголовный розыск считает меня
        своим работником.
      - Я дам вам парабеллум, если дружба станет слишком серьезной!
      - >-
        План? Из Васюков полетят сигналы на Марс, а я буду на Земле собирать
        деньги на билет.
  - source_sentence: Какой у тебя любимый фильм?
    sentences:
      - Может быть, тебе дать еще список фильмов, где много денег?
      - Вам нужно путешествовать так, чтобы потом не забыть, где памятник.
      - А доисторические спортсмены в матрацах не тренируются?
  - source_sentence: Как ты проводишь свободное время?
    sentences:
      - Напиток? Командовать парадом буду я!
      - Нас топят  мы выплываем, а свободное время  это для плавания!
      - От мертвого осла уши получишь у Пушкина, а от фильмов  только кадры.
  - source_sentence: Как ты проводишь свободное время?
    sentences:
      - Картина битвы мне ясна, но я предпочитаю не сражаться с скукой.
      - Спорт  это для тех, кто не знает, что они произошли от коровы!
      - >-
        Тайный союз меча и орала! Свободное время — это когда можно ничего не
        делать и не переживать!
  - source_sentence: Какой у тебя любимый фильм?
    sentences:
      - А что, разве я похож на человека, который не любит читать между строк?
      - У нас хотя и не Париж, но кино у нас всегда с интригой!
      - Фильм? Знойная женщина, мечта поэта  вот мой любимый сюжет!
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE m3 for Ostap project
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.14933628318584072
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2665929203539823
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.34292035398230086
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4856194690265487
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14933628318584072
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08886430678466074
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06858407079646017
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04856194690265486
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14933628318584072
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2665929203539823
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.34292035398230086
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4856194690265487
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2942645243659726
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.23620329400196635
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2600956714540916
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.14601769911504425
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26548672566371684
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3473451327433628
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.48672566371681414
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14601769911504425
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08849557522123894
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06946902654867257
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.048672566371681415
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14601769911504425
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.26548672566371684
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3473451327433628
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.48672566371681414
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2931785163867407
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2343512958280655
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2581995173126666
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.14823008849557523
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26548672566371684
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.34513274336283184
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4944690265486726
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14823008849557523
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08849557522123894
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06902654867256636
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04944690265486726
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14823008849557523
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.26548672566371684
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.34513274336283184
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4944690265486726
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2965536225707287
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.23654261483354377
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2597641504609653
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.14491150442477876
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2688053097345133
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.34845132743362833
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4911504424778761
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14491150442477876
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08960176991150441
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06969026548672566
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.049115044247787606
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14491150442477876
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2688053097345133
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.34845132743362833
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4911504424778761
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2942530832557106
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2342999367888746
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2580055991240585
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.14712389380530974
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2665929203539823
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.34623893805309736
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4944690265486726
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14712389380530974
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08886430678466076
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06924778761061946
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04944690265486726
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14712389380530974
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2665929203539823
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.34623893805309736
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4944690265486726
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2963702071144291
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2362221695462843
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.25976571809408944
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.14601769911504425
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26991150442477874
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3473451327433628
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.497787610619469
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14601769911504425
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08997050147492625
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06946902654867257
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.049778761061946904
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14601769911504425
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.26991150442477874
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3473451327433628
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.497787610619469
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.29684044099735196
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.23588767734232302
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2592174386566743
            name: Cosine Map@100

BGE m3 for Ostap project

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Language: ru
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("fitlemon/bge-m3-ru-ostap")
# Run inference
sentences = [
    'Какой у тебя любимый фильм?',
    'У нас хотя и не Париж, но кино у нас всегда с интригой!',
    'Фильм? Знойная женщина, мечта поэта — вот мой любимый сюжет!',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_1024 dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.1493 0.146 0.1482 0.1449 0.1471 0.146
cosine_accuracy@3 0.2666 0.2655 0.2655 0.2688 0.2666 0.2699
cosine_accuracy@5 0.3429 0.3473 0.3451 0.3485 0.3462 0.3473
cosine_accuracy@10 0.4856 0.4867 0.4945 0.4912 0.4945 0.4978
cosine_precision@1 0.1493 0.146 0.1482 0.1449 0.1471 0.146
cosine_precision@3 0.0889 0.0885 0.0885 0.0896 0.0889 0.09
cosine_precision@5 0.0686 0.0695 0.069 0.0697 0.0692 0.0695
cosine_precision@10 0.0486 0.0487 0.0494 0.0491 0.0494 0.0498
cosine_recall@1 0.1493 0.146 0.1482 0.1449 0.1471 0.146
cosine_recall@3 0.2666 0.2655 0.2655 0.2688 0.2666 0.2699
cosine_recall@5 0.3429 0.3473 0.3451 0.3485 0.3462 0.3473
cosine_recall@10 0.4856 0.4867 0.4945 0.4912 0.4945 0.4978
cosine_ndcg@10 0.2943 0.2932 0.2966 0.2943 0.2964 0.2968
cosine_mrr@10 0.2362 0.2344 0.2365 0.2343 0.2362 0.2359
cosine_map@100 0.2601 0.2582 0.2598 0.258 0.2598 0.2592

Training Details

Training Dataset

Unnamed Dataset

  • Size: 904 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 904 samples:
    question answer
    type string string
    details
    • min: 6 tokens
    • mean: 10.16 tokens
    • max: 14 tokens
    • min: 8 tokens
    • mean: 20.91 tokens
    • max: 43 tokens
  • Samples:
    question answer
    Как ты проводишь свободное время? Любителя бьют, а время — не ждет!
    Какой у тебя план на будущее? План на будущее? Широкие массы миллиардеров уже составили его за меня.
    Какой у тебя любимый цвет? Вы мне в конце концов не художник, не дизайнер и не стилист.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_ndcg@10 dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.0885 10 6.8669 - - - - - -
0.1770 20 4.9384 - - - - - -
0.2655 30 3.1491 - - - - - -
0.3540 40 2.5456 - - - - - -
0.4425 50 3.6943 - - - - - -
0.5310 60 1.8947 - - - - - -
0.6195 70 2.1762 - - - - - -
0.7080 80 1.9446 - - - - - -
0.7965 90 1.5278 - - - - - -
0.8850 100 2.0417 - - - - - -
0.9735 110 3.7804 - - - - - -
1.0 113 - 0.2751 0.2747 0.2761 0.2786 0.2764 0.2715
1.0619 120 1.9706 - - - - - -
1.1504 130 1.7073 - - - - - -
1.2389 140 1.3279 - - - - - -
1.3274 150 1.2724 - - - - - -
1.4159 160 2.4455 - - - - - -
1.5044 170 0.5255 - - - - - -
1.5929 180 2.5764 - - - - - -
1.6814 190 1.56 - - - - - -
1.7699 200 0.9105 - - - - - -
1.8584 210 1.9859 - - - - - -
1.9469 220 1.6355 - - - - - -
2.0088 227 - 0.2837 0.2852 0.2880 0.2899 0.2926 0.2902
2.0265 230 0.6769 - - - - - -
2.1150 240 0.764 - - - - - -
2.2035 250 1.0598 - - - - - -
2.2920 260 0.9267 - - - - - -
2.3805 270 0.9687 - - - - - -
2.4690 280 0.7875 - - - - - -
2.5575 290 1.3853 - - - - - -
2.6460 300 0.8114 - - - - - -
2.7345 310 1.6069 - - - - - -
2.8230 320 0.8149 - - - - - -
2.9115 330 0.8858 - - - - - -
3.0 340 0.7858 0.2920 0.2917 0.2929 0.2927 0.2967 0.2969
3.0885 350 0.5889 - - - - - -
3.1770 360 0.3542 - - - - - -
3.2655 370 0.5868 - - - - - -
3.3540 380 0.4988 - - - - - -
3.4425 390 0.4577 - - - - - -
3.5310 400 0.4735 - - - - - -
3.6195 410 1.2588 - - - - - -
3.7080 420 0.6346 - - - - - -
3.7965 430 0.3013 - - - - - -
3.8850 440 0.6734 - - - - - -
3.9735 450 0.3469 - - - - - -
3.9912 452 - 0.2943 0.2932 0.2966 0.2943 0.2964 0.2968
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}