--- language: - ru license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:904 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-m3 widget: - source_sentence: Какой у тебя план на будущее? sentences: - Работа — это скучно, если не считать, что Уголовный розыск считает меня своим работником. - Я дам вам парабеллум, если дружба станет слишком серьезной! - План? Из Васюков полетят сигналы на Марс, а я буду на Земле собирать деньги на билет. - source_sentence: Какой у тебя любимый фильм? sentences: - Может быть, тебе дать еще список фильмов, где много денег? - Вам нужно путешествовать так, чтобы потом не забыть, где памятник. - А доисторические спортсмены в матрацах не тренируются? - source_sentence: Как ты проводишь свободное время? sentences: - Напиток? Командовать парадом буду я! - Нас топят — мы выплываем, а свободное время — это для плавания! - От мертвого осла уши получишь у Пушкина, а от фильмов — только кадры. - source_sentence: Как ты проводишь свободное время? sentences: - Картина битвы мне ясна, но я предпочитаю не сражаться с скукой. - Спорт — это для тех, кто не знает, что они произошли от коровы! - Тайный союз меча и орала! Свободное время — это когда можно ничего не делать и не переживать! - source_sentence: Какой у тебя любимый фильм? sentences: - А что, разве я похож на человека, который не любит читать между строк? - У нас хотя и не Париж, но кино у нас всегда с интригой! - Фильм? Знойная женщина, мечта поэта — вот мой любимый сюжет! pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: BGE m3 for Ostap project results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.14933628318584072 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2665929203539823 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34292035398230086 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.4856194690265487 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14933628318584072 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08886430678466074 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06858407079646017 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04856194690265486 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14933628318584072 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2665929203539823 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.34292035398230086 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.4856194690265487 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2942645243659726 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23620329400196635 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2600956714540916 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.14601769911504425 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.26548672566371684 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3473451327433628 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.48672566371681414 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14601769911504425 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08849557522123894 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06946902654867257 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.048672566371681415 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14601769911504425 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.26548672566371684 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3473451327433628 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.48672566371681414 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2931785163867407 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2343512958280655 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2581995173126666 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.14823008849557523 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.26548672566371684 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34513274336283184 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.4944690265486726 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14823008849557523 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08849557522123894 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06902654867256636 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04944690265486726 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14823008849557523 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.26548672566371684 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.34513274336283184 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.4944690265486726 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2965536225707287 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23654261483354377 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2597641504609653 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.14491150442477876 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2688053097345133 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34845132743362833 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.4911504424778761 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14491150442477876 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08960176991150441 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06969026548672566 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.049115044247787606 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14491150442477876 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2688053097345133 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.34845132743362833 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.4911504424778761 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2942530832557106 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2342999367888746 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2580055991240585 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.14712389380530974 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2665929203539823 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34623893805309736 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.4944690265486726 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14712389380530974 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08886430678466076 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06924778761061946 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04944690265486726 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14712389380530974 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2665929203539823 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.34623893805309736 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.4944690265486726 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2963702071144291 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2362221695462843 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.25976571809408944 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.14601769911504425 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.26991150442477874 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3473451327433628 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.497787610619469 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14601769911504425 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08997050147492625 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06946902654867257 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.049778761061946904 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14601769911504425 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.26991150442477874 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3473451327433628 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.497787610619469 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.29684044099735196 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23588767734232302 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2592174386566743 name: Cosine Map@100 --- # BGE m3 for Ostap project This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Language:** ru - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("fitlemon/bge-m3-ru-ostap") # Run inference sentences = [ 'Какой у тебя любимый фильм?', 'У нас хотя и не Париж, но кино у нас всегда с интригой!', 'Фильм? Знойная женщина, мечта поэта — вот мой любимый сюжет!', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_1024`, `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_1024 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 | | cosine_accuracy@3 | 0.2666 | 0.2655 | 0.2655 | 0.2688 | 0.2666 | 0.2699 | | cosine_accuracy@5 | 0.3429 | 0.3473 | 0.3451 | 0.3485 | 0.3462 | 0.3473 | | cosine_accuracy@10 | 0.4856 | 0.4867 | 0.4945 | 0.4912 | 0.4945 | 0.4978 | | cosine_precision@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 | | cosine_precision@3 | 0.0889 | 0.0885 | 0.0885 | 0.0896 | 0.0889 | 0.09 | | cosine_precision@5 | 0.0686 | 0.0695 | 0.069 | 0.0697 | 0.0692 | 0.0695 | | cosine_precision@10 | 0.0486 | 0.0487 | 0.0494 | 0.0491 | 0.0494 | 0.0498 | | cosine_recall@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 | | cosine_recall@3 | 0.2666 | 0.2655 | 0.2655 | 0.2688 | 0.2666 | 0.2699 | | cosine_recall@5 | 0.3429 | 0.3473 | 0.3451 | 0.3485 | 0.3462 | 0.3473 | | cosine_recall@10 | 0.4856 | 0.4867 | 0.4945 | 0.4912 | 0.4945 | 0.4978 | | **cosine_ndcg@10** | **0.2943** | **0.2932** | **0.2966** | **0.2943** | **0.2964** | **0.2968** | | cosine_mrr@10 | 0.2362 | 0.2344 | 0.2365 | 0.2343 | 0.2362 | 0.2359 | | cosine_map@100 | 0.2601 | 0.2582 | 0.2598 | 0.258 | 0.2598 | 0.2592 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 904 training samples * Columns: question and answer * Approximate statistics based on the first 904 samples: | | question | answer | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | question | answer | |:-----------------------------------------------|:------------------------------------------------------------------------------------| | Как ты проводишь свободное время? | Любителя бьют, а время — не ждет! | | Какой у тебя план на будущее? | План на будущее? Широкие массы миллиардеров уже составили его за меня. | | Какой у тебя любимый цвет? | Вы мне в конце концов не художник, не дизайнер и не стилист. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.0885 | 10 | 6.8669 | - | - | - | - | - | - | | 0.1770 | 20 | 4.9384 | - | - | - | - | - | - | | 0.2655 | 30 | 3.1491 | - | - | - | - | - | - | | 0.3540 | 40 | 2.5456 | - | - | - | - | - | - | | 0.4425 | 50 | 3.6943 | - | - | - | - | - | - | | 0.5310 | 60 | 1.8947 | - | - | - | - | - | - | | 0.6195 | 70 | 2.1762 | - | - | - | - | - | - | | 0.7080 | 80 | 1.9446 | - | - | - | - | - | - | | 0.7965 | 90 | 1.5278 | - | - | - | - | - | - | | 0.8850 | 100 | 2.0417 | - | - | - | - | - | - | | 0.9735 | 110 | 3.7804 | - | - | - | - | - | - | | 1.0 | 113 | - | 0.2751 | 0.2747 | 0.2761 | 0.2786 | 0.2764 | 0.2715 | | 1.0619 | 120 | 1.9706 | - | - | - | - | - | - | | 1.1504 | 130 | 1.7073 | - | - | - | - | - | - | | 1.2389 | 140 | 1.3279 | - | - | - | - | - | - | | 1.3274 | 150 | 1.2724 | - | - | - | - | - | - | | 1.4159 | 160 | 2.4455 | - | - | - | - | - | - | | 1.5044 | 170 | 0.5255 | - | - | - | - | - | - | | 1.5929 | 180 | 2.5764 | - | - | - | - | - | - | | 1.6814 | 190 | 1.56 | - | - | - | - | - | - | | 1.7699 | 200 | 0.9105 | - | - | - | - | - | - | | 1.8584 | 210 | 1.9859 | - | - | - | - | - | - | | 1.9469 | 220 | 1.6355 | - | - | - | - | - | - | | 2.0088 | 227 | - | 0.2837 | 0.2852 | 0.2880 | 0.2899 | 0.2926 | 0.2902 | | 2.0265 | 230 | 0.6769 | - | - | - | - | - | - | | 2.1150 | 240 | 0.764 | - | - | - | - | - | - | | 2.2035 | 250 | 1.0598 | - | - | - | - | - | - | | 2.2920 | 260 | 0.9267 | - | - | - | - | - | - | | 2.3805 | 270 | 0.9687 | - | - | - | - | - | - | | 2.4690 | 280 | 0.7875 | - | - | - | - | - | - | | 2.5575 | 290 | 1.3853 | - | - | - | - | - | - | | 2.6460 | 300 | 0.8114 | - | - | - | - | - | - | | 2.7345 | 310 | 1.6069 | - | - | - | - | - | - | | 2.8230 | 320 | 0.8149 | - | - | - | - | - | - | | 2.9115 | 330 | 0.8858 | - | - | - | - | - | - | | 3.0 | 340 | 0.7858 | 0.2920 | 0.2917 | 0.2929 | 0.2927 | 0.2967 | 0.2969 | | 3.0885 | 350 | 0.5889 | - | - | - | - | - | - | | 3.1770 | 360 | 0.3542 | - | - | - | - | - | - | | 3.2655 | 370 | 0.5868 | - | - | - | - | - | - | | 3.3540 | 380 | 0.4988 | - | - | - | - | - | - | | 3.4425 | 390 | 0.4577 | - | - | - | - | - | - | | 3.5310 | 400 | 0.4735 | - | - | - | - | - | - | | 3.6195 | 410 | 1.2588 | - | - | - | - | - | - | | 3.7080 | 420 | 0.6346 | - | - | - | - | - | - | | 3.7965 | 430 | 0.3013 | - | - | - | - | - | - | | 3.8850 | 440 | 0.6734 | - | - | - | - | - | - | | 3.9735 | 450 | 0.3469 | - | - | - | - | - | - | | **3.9912** | **452** | **-** | **0.2943** | **0.2932** | **0.2966** | **0.2943** | **0.2964** | **0.2968** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```