BGE m3 for Ostap project
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Language: ru
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fitlemon/bge-m3-ru-ostap")
# Run inference
sentences = [
'Какой у тебя любимый фильм?',
'У нас хотя и не Париж, но кино у нас всегда с интригой!',
'Фильм? Знойная женщина, мечта поэта — вот мой любимый сюжет!',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_1024
,dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_1024 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 |
cosine_accuracy@3 | 0.2666 | 0.2655 | 0.2655 | 0.2688 | 0.2666 | 0.2699 |
cosine_accuracy@5 | 0.3429 | 0.3473 | 0.3451 | 0.3485 | 0.3462 | 0.3473 |
cosine_accuracy@10 | 0.4856 | 0.4867 | 0.4945 | 0.4912 | 0.4945 | 0.4978 |
cosine_precision@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 |
cosine_precision@3 | 0.0889 | 0.0885 | 0.0885 | 0.0896 | 0.0889 | 0.09 |
cosine_precision@5 | 0.0686 | 0.0695 | 0.069 | 0.0697 | 0.0692 | 0.0695 |
cosine_precision@10 | 0.0486 | 0.0487 | 0.0494 | 0.0491 | 0.0494 | 0.0498 |
cosine_recall@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 |
cosine_recall@3 | 0.2666 | 0.2655 | 0.2655 | 0.2688 | 0.2666 | 0.2699 |
cosine_recall@5 | 0.3429 | 0.3473 | 0.3451 | 0.3485 | 0.3462 | 0.3473 |
cosine_recall@10 | 0.4856 | 0.4867 | 0.4945 | 0.4912 | 0.4945 | 0.4978 |
cosine_ndcg@10 | 0.2943 | 0.2932 | 0.2966 | 0.2943 | 0.2964 | 0.2968 |
cosine_mrr@10 | 0.2362 | 0.2344 | 0.2365 | 0.2343 | 0.2362 | 0.2359 |
cosine_map@100 | 0.2601 | 0.2582 | 0.2598 | 0.258 | 0.2598 | 0.2592 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 904 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 904 samples:
question answer type string string details - min: 6 tokens
- mean: 10.16 tokens
- max: 14 tokens
- min: 8 tokens
- mean: 20.91 tokens
- max: 43 tokens
- Samples:
question answer Как ты проводишь свободное время?
Любителя бьют, а время — не ждет!
Какой у тебя план на будущее?
План на будущее? Широкие массы миллиардеров уже составили его за меня.
Какой у тебя любимый цвет?
Вы мне в конце концов не художник, не дизайнер и не стилист.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochlearning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|
0.0885 | 10 | 6.8669 | - | - | - | - | - | - |
0.1770 | 20 | 4.9384 | - | - | - | - | - | - |
0.2655 | 30 | 3.1491 | - | - | - | - | - | - |
0.3540 | 40 | 2.5456 | - | - | - | - | - | - |
0.4425 | 50 | 3.6943 | - | - | - | - | - | - |
0.5310 | 60 | 1.8947 | - | - | - | - | - | - |
0.6195 | 70 | 2.1762 | - | - | - | - | - | - |
0.7080 | 80 | 1.9446 | - | - | - | - | - | - |
0.7965 | 90 | 1.5278 | - | - | - | - | - | - |
0.8850 | 100 | 2.0417 | - | - | - | - | - | - |
0.9735 | 110 | 3.7804 | - | - | - | - | - | - |
1.0 | 113 | - | 0.2751 | 0.2747 | 0.2761 | 0.2786 | 0.2764 | 0.2715 |
1.0619 | 120 | 1.9706 | - | - | - | - | - | - |
1.1504 | 130 | 1.7073 | - | - | - | - | - | - |
1.2389 | 140 | 1.3279 | - | - | - | - | - | - |
1.3274 | 150 | 1.2724 | - | - | - | - | - | - |
1.4159 | 160 | 2.4455 | - | - | - | - | - | - |
1.5044 | 170 | 0.5255 | - | - | - | - | - | - |
1.5929 | 180 | 2.5764 | - | - | - | - | - | - |
1.6814 | 190 | 1.56 | - | - | - | - | - | - |
1.7699 | 200 | 0.9105 | - | - | - | - | - | - |
1.8584 | 210 | 1.9859 | - | - | - | - | - | - |
1.9469 | 220 | 1.6355 | - | - | - | - | - | - |
2.0088 | 227 | - | 0.2837 | 0.2852 | 0.2880 | 0.2899 | 0.2926 | 0.2902 |
2.0265 | 230 | 0.6769 | - | - | - | - | - | - |
2.1150 | 240 | 0.764 | - | - | - | - | - | - |
2.2035 | 250 | 1.0598 | - | - | - | - | - | - |
2.2920 | 260 | 0.9267 | - | - | - | - | - | - |
2.3805 | 270 | 0.9687 | - | - | - | - | - | - |
2.4690 | 280 | 0.7875 | - | - | - | - | - | - |
2.5575 | 290 | 1.3853 | - | - | - | - | - | - |
2.6460 | 300 | 0.8114 | - | - | - | - | - | - |
2.7345 | 310 | 1.6069 | - | - | - | - | - | - |
2.8230 | 320 | 0.8149 | - | - | - | - | - | - |
2.9115 | 330 | 0.8858 | - | - | - | - | - | - |
3.0 | 340 | 0.7858 | 0.2920 | 0.2917 | 0.2929 | 0.2927 | 0.2967 | 0.2969 |
3.0885 | 350 | 0.5889 | - | - | - | - | - | - |
3.1770 | 360 | 0.3542 | - | - | - | - | - | - |
3.2655 | 370 | 0.5868 | - | - | - | - | - | - |
3.3540 | 380 | 0.4988 | - | - | - | - | - | - |
3.4425 | 390 | 0.4577 | - | - | - | - | - | - |
3.5310 | 400 | 0.4735 | - | - | - | - | - | - |
3.6195 | 410 | 1.2588 | - | - | - | - | - | - |
3.7080 | 420 | 0.6346 | - | - | - | - | - | - |
3.7965 | 430 | 0.3013 | - | - | - | - | - | - |
3.8850 | 440 | 0.6734 | - | - | - | - | - | - |
3.9735 | 450 | 0.3469 | - | - | - | - | - | - |
3.9912 | 452 | - | 0.2943 | 0.2932 | 0.2966 | 0.2943 | 0.2964 | 0.2968 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for fitlemon/bge-m3-ru-ostap
Base model
BAAI/bge-m3Space using fitlemon/bge-m3-ru-ostap 1
Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.149
- Cosine Accuracy@3 on dim 1024self-reported0.267
- Cosine Accuracy@5 on dim 1024self-reported0.343
- Cosine Accuracy@10 on dim 1024self-reported0.486
- Cosine Precision@1 on dim 1024self-reported0.149
- Cosine Precision@3 on dim 1024self-reported0.089
- Cosine Precision@5 on dim 1024self-reported0.069
- Cosine Precision@10 on dim 1024self-reported0.049
- Cosine Recall@1 on dim 1024self-reported0.149
- Cosine Recall@3 on dim 1024self-reported0.267