Datasets:

Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
The dataset viewer is not available for this dataset.
fetch failed

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

This dataset was created using LeRobot.

Dataset Structure

meta/info.json:

{
    "codebase_version": "v2.0",
    "robot_type": "unknown",
    "total_episodes": 14,
    "total_frames": 440,
    "total_tasks": 12,
    "total_videos": 14,
    "total_chunks": 1,
    "chunks_size": 1000,
    "fps": 5,
    "splits": {
        "train": "0:14"
    },
    "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
    "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
    "features": {
        "observation.images.image": {
            "dtype": "video",
            "shape": [
                84,
                84,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ],
            "video_info": {
                "video.fps": 5.0,
                "video.codec": "av1",
                "video.pix_fmt": "yuv420p",
                "video.is_depth_map": false,
                "has_audio": false
            }
        },
        "language_instruction": {
            "dtype": "string",
            "shape": [
                1
            ],
            "names": null
        },
        "observation.state": {
            "dtype": "float32",
            "shape": [
                7
            ],
            "names": {
                "motors": [
                    "motor_0",
                    "motor_1",
                    "motor_2",
                    "motor_3",
                    "motor_4",
                    "motor_5",
                    "motor_6"
                ]
            }
        },
        "action": {
            "dtype": "float32",
            "shape": [
                7
            ],
            "names": {
                "motors": [
                    "motor_0",
                    "motor_1",
                    "motor_2",
                    "motor_3",
                    "motor_4",
                    "motor_5",
                    "motor_6"
                ]
            }
        },
        "timestamp": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "episode_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "frame_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "next.reward": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "next.done": {
            "dtype": "bool",
            "shape": [
                1
            ],
            "names": null
        },
        "index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "task_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        }
    }
}

Citation

BibTeX:

@inproceedings{haldar2023watch,
    title={Watch and match: Supercharging imitation with regularized optimal transport},
    author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
    booktitle={Conference on Robot Learning},
    pages={32--43},
    year={2023},
    organization={PMLR}
}
Downloads last month
199