kenfus's picture
Update README.md
97bca96 verified
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: int64
- name: antenna
dtype: string
- name: datetime
dtype: string
splits:
- name: train
num_bytes: 1833634770.762
num_examples: 113409
- name: validation
num_bytes: 228715568.866
num_examples: 14253
- name: test
num_bytes: 230174837.398
num_examples: 14271
download_size: 2352964096
dataset_size: 2292525177.026
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# e-Callisto Solar Flare Detection Dataset
![](https://www.fhnw.ch/en/++theme++web16theme/assets/media/img/university-applied-sciences-arts-northwestern-switzerland-fhnw-logo.svg)
[Institute of Data Science i4Ds, FHNW](https://i4ds.ch)
Compiled by [Vincenzo Timmel | Kenfus](https://github.com/kenfus)
## Overview
This dataset comprises radio spectra from the [e-Callisto solar spectrometer network](https://www.e-callisto.org/index.html), annotated according to the [e-Callisto Label List by Christian Monstein](http://soleil.i4ds.ch/solarradio/data/BurstLists/2010-yyyy_Monstein/). It is designed for training machine learning models to automatically detect and classify solar flares, using data collected via the [ecallisto_ng Package](https://github.com/i4Ds/ecallisto_ng).
## Non Radio-Sunburst Images
For every Radio-Sunburst image, five Non-Sunburst images are included (Label 0).
## Data Collection
The dataset encompasses observations from several antennas, each documenting specific periods of data collection. Below is the updated list of stations with their respective data collection ranges:
| Antenna | Min Date | Max Date |
|-----------------------|------------|------------|
| ALASKA-COHOE_63 | 2022-04-09 | 2024-02-22 |
| ALASKA-HAARP_62 | 2021-11-18 | 2024-02-23 |
| ALGERIA-CRAAG_59 | 2021-04-23 | 2024-02-22 |
| ALMATY_58 | 2021-02-28 | 2024-02-23 |
| AUSTRIA-UNIGRAZ_01 | 2021-01-20 | 2024-02-23 |
| Australia-ASSA_02 | 2021-02-13 | 2021-12-09 |
| Australia-ASSA_62 | 2021-12-10 | 2024-02-22 |
| BIR_01 | 2021-04-17 | 2024-02-14 |
| EGYPT-Alexandria_02 | 2021-08-20 | 2024-02-21 |
| GERMANY-DLR_63 | 2022-11-11 | 2024-02-22 |
| GLASGOW_01 | 2022-01-07 | 2024-02-22 |
| HUMAIN_59 | 2021-01-20 | 2024-02-23 |
| INDIA-GAURI_01 | 2022-04-20 | 2024-02-21 |
| INDIA-OOTY_02 | 2021-12-09 | 2024-02-23 |
| KASI_59 | 2021-04-22 | 2024-02-23 |
| MEXART_59 | 2021-02-18 | 2024-02-21 |
| MEXICO-FCFM-UANL_01 | 2023-09-02 | 2024-02-21 |
| MEXICO-LANCE-B_62 | 2022-03-30 | 2022-08-02 |
| MONGOLIA-UB_01 | 2021-03-01 | 2024-02-16 |
| MRO_59 | 2021-03-01 | 2024-02-16 |
| MRO_61 | 2021-02-28 | 2024-02-16 |
| NORWAY-EGERSUND_01 | 2022-10-16 | 2024-02-23 |
| SSRT_59 | 2022-10-30 | 2024-02-23 |
| SWISS-Landschlacht_62 | 2021-10-05 | 2024-02-23 |
| TRIEST_57 | 2021-01-20 | 2024-02-23 |
| USA-ARIZONA-ERAU_01 | 2022-05-15 | 2024-02-22 |
## Data Augmentation
Data augmentation is applied by subtracting random minutes before the start of a detected radio sunburst, thereby generating 15-minute images that include the onset of a radio-sunburst.
## Caution
Preprocessing, including label cleanup based on specific assumptions, has been applied to the dataset. Users should note that the labels might not be entirely accurate, reflecting potential inaccuracies
## Distribution
**Train**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564a6f4ff73855b0327455a/cis_YvRe1OQhdtWIesl1M.png)
**Validation**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564a6f4ff73855b0327455a/04VONOgKHOJmrqTzeV2y3.png)
**Test**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564a6f4ff73855b0327455a/ct8CG83ryHsvhgtRrMXmJ.png)