kenfus's picture
Update README.md
97bca96 verified
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: label
      dtype: int64
    - name: antenna
      dtype: string
    - name: datetime
      dtype: string
  splits:
    - name: train
      num_bytes: 1833634770.762
      num_examples: 113409
    - name: validation
      num_bytes: 228715568.866
      num_examples: 14253
    - name: test
      num_bytes: 230174837.398
      num_examples: 14271
  download_size: 2352964096
  dataset_size: 2292525177.026
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*

e-Callisto Solar Flare Detection Dataset

Institute of Data Science i4Ds, FHNW
Compiled by Vincenzo Timmel | Kenfus

Overview

This dataset comprises radio spectra from the e-Callisto solar spectrometer network, annotated according to the e-Callisto Label List by Christian Monstein. It is designed for training machine learning models to automatically detect and classify solar flares, using data collected via the ecallisto_ng Package.

Non Radio-Sunburst Images

For every Radio-Sunburst image, five Non-Sunburst images are included (Label 0).

Data Collection

The dataset encompasses observations from several antennas, each documenting specific periods of data collection. Below is the updated list of stations with their respective data collection ranges:

Antenna Min Date Max Date
ALASKA-COHOE_63 2022-04-09 2024-02-22
ALASKA-HAARP_62 2021-11-18 2024-02-23
ALGERIA-CRAAG_59 2021-04-23 2024-02-22
ALMATY_58 2021-02-28 2024-02-23
AUSTRIA-UNIGRAZ_01 2021-01-20 2024-02-23
Australia-ASSA_02 2021-02-13 2021-12-09
Australia-ASSA_62 2021-12-10 2024-02-22
BIR_01 2021-04-17 2024-02-14
EGYPT-Alexandria_02 2021-08-20 2024-02-21
GERMANY-DLR_63 2022-11-11 2024-02-22
GLASGOW_01 2022-01-07 2024-02-22
HUMAIN_59 2021-01-20 2024-02-23
INDIA-GAURI_01 2022-04-20 2024-02-21
INDIA-OOTY_02 2021-12-09 2024-02-23
KASI_59 2021-04-22 2024-02-23
MEXART_59 2021-02-18 2024-02-21
MEXICO-FCFM-UANL_01 2023-09-02 2024-02-21
MEXICO-LANCE-B_62 2022-03-30 2022-08-02
MONGOLIA-UB_01 2021-03-01 2024-02-16
MRO_59 2021-03-01 2024-02-16
MRO_61 2021-02-28 2024-02-16
NORWAY-EGERSUND_01 2022-10-16 2024-02-23
SSRT_59 2022-10-30 2024-02-23
SWISS-Landschlacht_62 2021-10-05 2024-02-23
TRIEST_57 2021-01-20 2024-02-23
USA-ARIZONA-ERAU_01 2022-05-15 2024-02-22

Data Augmentation

Data augmentation is applied by subtracting random minutes before the start of a detected radio sunburst, thereby generating 15-minute images that include the onset of a radio-sunburst.

Caution

Preprocessing, including label cleanup based on specific assumptions, has been applied to the dataset. Users should note that the labels might not be entirely accurate, reflecting potential inaccuracies

Distribution

Train

image/png

Validation

image/png

Test

image/png