--- dataset_info: features: - name: image dtype: image - name: label dtype: int64 - name: antenna dtype: string - name: datetime dtype: string splits: - name: train num_bytes: 1833634770.762 num_examples: 113409 - name: validation num_bytes: 228715568.866 num_examples: 14253 - name: test num_bytes: 230174837.398 num_examples: 14271 download_size: 2352964096 dataset_size: 2292525177.026 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # e-Callisto Solar Flare Detection Dataset ![](https://www.fhnw.ch/en/++theme++web16theme/assets/media/img/university-applied-sciences-arts-northwestern-switzerland-fhnw-logo.svg) [Institute of Data Science i4Ds, FHNW](https://i4ds.ch) Compiled by [Vincenzo Timmel | Kenfus](https://github.com/kenfus) ## Overview This dataset comprises radio spectra from the [e-Callisto solar spectrometer network](https://www.e-callisto.org/index.html), annotated according to the [e-Callisto Label List by Christian Monstein](http://soleil.i4ds.ch/solarradio/data/BurstLists/2010-yyyy_Monstein/). It is designed for training machine learning models to automatically detect and classify solar flares, using data collected via the [ecallisto_ng Package](https://github.com/i4Ds/ecallisto_ng). ## Non Radio-Sunburst Images For every Radio-Sunburst image, five Non-Sunburst images are included (Label 0). ## Data Collection The dataset encompasses observations from several antennas, each documenting specific periods of data collection. Below is the updated list of stations with their respective data collection ranges: | Antenna | Min Date | Max Date | |-----------------------|------------|------------| | ALASKA-COHOE_63 | 2022-04-09 | 2024-02-22 | | ALASKA-HAARP_62 | 2021-11-18 | 2024-02-23 | | ALGERIA-CRAAG_59 | 2021-04-23 | 2024-02-22 | | ALMATY_58 | 2021-02-28 | 2024-02-23 | | AUSTRIA-UNIGRAZ_01 | 2021-01-20 | 2024-02-23 | | Australia-ASSA_02 | 2021-02-13 | 2021-12-09 | | Australia-ASSA_62 | 2021-12-10 | 2024-02-22 | | BIR_01 | 2021-04-17 | 2024-02-14 | | EGYPT-Alexandria_02 | 2021-08-20 | 2024-02-21 | | GERMANY-DLR_63 | 2022-11-11 | 2024-02-22 | | GLASGOW_01 | 2022-01-07 | 2024-02-22 | | HUMAIN_59 | 2021-01-20 | 2024-02-23 | | INDIA-GAURI_01 | 2022-04-20 | 2024-02-21 | | INDIA-OOTY_02 | 2021-12-09 | 2024-02-23 | | KASI_59 | 2021-04-22 | 2024-02-23 | | MEXART_59 | 2021-02-18 | 2024-02-21 | | MEXICO-FCFM-UANL_01 | 2023-09-02 | 2024-02-21 | | MEXICO-LANCE-B_62 | 2022-03-30 | 2022-08-02 | | MONGOLIA-UB_01 | 2021-03-01 | 2024-02-16 | | MRO_59 | 2021-03-01 | 2024-02-16 | | MRO_61 | 2021-02-28 | 2024-02-16 | | NORWAY-EGERSUND_01 | 2022-10-16 | 2024-02-23 | | SSRT_59 | 2022-10-30 | 2024-02-23 | | SWISS-Landschlacht_62 | 2021-10-05 | 2024-02-23 | | TRIEST_57 | 2021-01-20 | 2024-02-23 | | USA-ARIZONA-ERAU_01 | 2022-05-15 | 2024-02-22 | ## Data Augmentation Data augmentation is applied by subtracting random minutes before the start of a detected radio sunburst, thereby generating 15-minute images that include the onset of a radio-sunburst. ## Caution Preprocessing, including label cleanup based on specific assumptions, has been applied to the dataset. Users should note that the labels might not be entirely accurate, reflecting potential inaccuracies ## Distribution **Train** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564a6f4ff73855b0327455a/cis_YvRe1OQhdtWIesl1M.png) **Validation** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564a6f4ff73855b0327455a/04VONOgKHOJmrqTzeV2y3.png) **Test** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564a6f4ff73855b0327455a/ct8CG83ryHsvhgtRrMXmJ.png)