ID
int64 1
1.07k
| Comment
stringlengths 8
1.13k
| Code
stringlengths 10
4.28k
| Label
stringclasses 4
values | Source
stringlengths 21
21
| File
stringlengths 4
82
|
---|---|---|---|---|---|
901 | one participant has a typing error in the age variable (stated he was 2). Set to NA. | mst1[which(mst1$age == 2), "age"] <- NA | Data Variable | https://osf.io/m6pb2/ | Data_preparation_Sample_D.r |
902 | association between vote and ideology | ggplot(dat, aes(x = Ideology, y = Percent.Vote.Rep)) + geom_vline(xintercept = .50, color = "gray50", linetype = 2) + geom_hline(yintercept = .50, color = "gray50", linetype = 2) + stat_poly_line() + stat_correlation(label.x = "left", small.r = TRUE) + geom_point() + geom_text_repel(size = 3, aes(label = Group)) + labs(y = "Proportion Voting Republican", x = "Ideology") + coord_cartesian(xlim = c(0, 1), ylim = c(0, 1)) + theme_cowplot() ggsave("figures/predictor_scatter.pdf", width = 5.5, height = 5) | Data Variable | https://osf.io/hfxsb/ | basic_mods.R |
903 | Make a dot and a line color column depending on the significance level Check significance level and if significant add respective color to new column | ageR = data.frame(dotCol = rep(ifelse(summary(lm(initLevel ~ age, data = id_df))$coefficients[2,4]< 0.05, "khaki3", "lightgrey"), length(unique(id_df$userCode))), lineCol = rep(ifelse(summary(lm(initLevel ~ age, data = id_df))$coefficients[2,4]< 0.05, "cyan4", "darkgrey"), length(unique(id_df$userCode)))) educR = data.frame(dotCol = rep(ifelse(summary(lm(initLevel ~ educ_y, data = id_df))$coefficients[2,4]< 0.05, "khaki3", "lightgrey"), length(unique(id_df$userCode))), lineCol = rep(ifelse(summary(lm(initLevel ~ educ_y, data = id_df))$coefficients[2,4]< 0.05, "cyan4", "darkgrey"), length(unique(id_df$userCode)))) blpR = data.frame(dotCol = rep(ifelse(summary(lm(initLevel ~ BLP, data = id_df))$coefficients[2,4]< 0.05, "khaki3", "lightgrey"), length(unique(id_df$userCode))), lineCol = rep(ifelse(summary(lm(initLevel ~ BLP, data = id_df))$coefficients[2,4]< 0.05, "cyan4", "darkgrey"), length(unique(id_df$userCode)))) actR = data.frame(dotCol = rep(ifelse(summary(lm(initLevel ~ Act_total, data = id_df))$coefficients[2,4]< 0.05, "khaki3", "lightgrey"), length(unique(id_df$userCode))), lineCol = rep(ifelse(summary(lm(initLevel ~ Act_total, data = id_df))$coefficients[2,4]< 0.05, "cyan4", "darkgrey"), length(unique(id_df$userCode)))) motivR = data.frame(dotCol = rep(ifelse(summary(lm(initLevel ~ socioAffect_init, data = id_df))$coefficients[2,4]< 0.05, "khaki3", "lightgrey"), length(unique(id_df$userCode))), lineCol = rep(ifelse(summary(lm(initLevel ~ socioAffect_init, data = id_df))$coefficients[2,4]< 0.05, "cyan4", "darkgrey"), length(unique(id_df$userCode)))) tmp = rbind.data.frame(ageR, educR, blpR, actR, motivR) corrDF = cbind(corrDF, tmp) | Visualization | https://osf.io/wcfj3/ | 2_idDiffs.R |
904 | Sample from those names 200 times, with replacement | animal <- sample(categories, 200, replace = TRUE) | Statistical Modeling | https://osf.io/eks6u/ | demo_script_2018_10_02.R |
905 | Create random variables Use rnorm() with varying means and SDs | length <- rnorm(200, 30, 8) weight <- rnorm(200, 4, 2) happiness <- rnorm(200, 3.5, 1) | Data Variable | https://osf.io/eks6u/ | demo_script_2018_10_02.R |
906 | Examine descriptive statistics Use the pipe, group_by(), and summarise() to get means, SDs, and medians for each category | animal_data %>% group_by(animal) %>% summarise( weight_mean = mean(weight), weight_sd = sd(weight), weight_median = median(weight) ) | Data Variable | https://osf.io/eks6u/ | demo_script_2018_10_02.R |
907 | Subset data to include only the first two categories Use filter() to select only rows that pass the given logical test | subset_1 <- animal_data %>% filter(animal == "puppy" | animal == "kitten") | Data Variable | https://osf.io/eks6u/ | demo_script_2018_10_02.R |
908 | Use subset for ttest Welch's ttest | t.test(weight ~ animal, data = subset_1) | Statistical Test | https://osf.io/eks6u/ | demo_script_2018_10_02.R |
909 | plot spaghettiplot for minute 1 and minute 5 | df_1_5 <- rbind(df_min1, df_min5) df_1_5 <- df_1_5 %>% mutate(range=droplevels(range)) p <- ggplot(data = df_1_5, aes(x = range, y = count, group = pp)) p + geom_point() p + geom_line() p + geom_line() + facet_grid(. ~ condition) p <- ggplot(data = df_min, aes(x = range, y = count, group = pp)) p + geom_point() p + geom_line() p + geom_line() + facet_grid(. ~ condition) | Visualization | https://osf.io/xh36s/ | behavior_analyses.R |
910 | do 3 way anova including the factor in which condition they are in | bfFull = anovaBF(count ~ condition + range + experiment + condition:range:experiment, data = df_b) bfFull[4]/bfFull[3] bfFull[18]/bfFull[17] bf1 = anovaBF(count ~ condition + range + experiment, data = df_b) | Statistical Test | https://osf.io/xh36s/ | behavior_analyses.R |
911 | pc: critical pvalue Overview: Creates a vector of the same length as the number of tests submitted to pcurve, significant and not, and computes the proportion of pvalues expected to be smaller than {pc} given the d.f. and outputs the entire vector, with NA values where needed Ftests (& thus ttests) | prop=ifelse(family=="f" & p<.05,1-pf(qf(1-pc,df1=df1, df2=df2),df1=df1, df2=df2, ncp=ncp33),NA) | Statistical Test | https://osf.io/ptfye/ | Analysis.R |
912 | Create vector that numbers studies 1 to N,includes n.s. studies | k=seq(from=1,to=length(raw)) | Data Variable | https://osf.io/ptfye/ | Analysis.R |
913 | 1.2 Parse the entered text into usable statistical results 1.3 Create test type indicator | stat=substring(raw,1,1) #stat: t,f,z,c,r test=ifelse(stat=="r","t",stat) #test: t,f,z,c (r-->t) | Statistical Test | https://osf.io/ptfye/ | Analysis.R |
914 | Make red dot at the estimate | points(hat,min(fit,na.rm=TRUE),pch=19,col="red",cex=2) | Visualization | https://osf.io/ptfye/ | Analysis.R |
915 | This loop creates a vector, blue, with 5 elements, with the proportions of p.01,p.02...p.05 | for (i in c(.01,.02,.03,.04,.05)) blue=c(blue,sum(ps==i,na.rm=TRUE)/ksig*100) | Data Variable | https://osf.io/ptfye/ | Analysis.R |
916 | FIG 3: scree plot for parallel analysis | rscree<-as.data.frame(cbind(spar$fa.values, spar$fa.simr)) colnames(rscree)<-c("Actual","Resampled") rscree$item<-seq.int(1, 12, 1) refplot<-pivot_longer(rscree, cols=1:2, names_to="Method") refplot2<-refplot %>% filter(item<5) iscree<-as.data.frame(cbind(ipar$fa.values, ipar$fa.simr)) colnames(iscree)<-c("Actual","Resampled") iscree$item<-seq.int(1, 8, 1) insplot<-pivot_longer(iscree, cols=1:2, names_to="Method") insplot2<-insplot %>% filter(item<5) refeig<-ggline(refplot2, x="item", y="value", group = "Method", color="Method", size=1.1, palette = paletteer_d("palettetown::tangela", direction=-1), xlab="Factor", ylab="Eigenvalue", title="Self-reflection")+ theme_minimal_hgrid(font_size=12, font_family = "Fira Sans Medium") scree.a<-ggpar(refeig, ylim = c(0,6), yticks.by=1, legend = c(.7,.77), legend.title = "") scree.a inseig<-ggline(insplot2, x="item", y="value", group = "Method", color="Method", size=1.1, palette = paletteer_d("palettetown::tangela", direction=-1), xlab="Factor", ylab="", title="Insight")+ theme_minimal_hgrid(font_size=12, font_family = "Fira Sans Medium") scree.b<-ggpar(inseig, ylim = c(0, 6), yticks.by=1, legend = c(.7,.77), legend.title = "") scree.b | Visualization | https://osf.io/qsa5w/ | SRIS,FullScaleIRTModelsandPlots.R |
917 | make sure data are in chronological order | pollenData <- pollenData[order(pollenData$age),] lakeData <- lakeData[order(lakeData$age),] charcoalData <- charcoalData[order(charcoalData$age),] tail(pollenData) tail(lakeData) tail(charcoalData) | Data Variable | https://osf.io/7h94n/ | Malawi_interpolation.R |
918 | examine descriptives of newly created variables here we are combining the dplyr and summarytools packages to subset the data and then get descriptives | eid_dat %>% dplyr::select(swl_mean, meim_ex_mean, meim_co_mean) %>% summarytools::descr() | Data Variable | https://osf.io/9gq4a/ | Getting Started With R - Script Key.R |
919 | step 6: multiple regression with exploration and commitment predicting SWL this function is in base R so no package to call | regression <- lm(swl_mean ~ meim_ex_mean + meim_co_mean, data=eid_dat) summary(regression) confint(regression) | Statistical Modeling | https://osf.io/9gq4a/ | Getting Started With R - Script Key.R |
920 | step 7: create scattterplots using ggplot2 scatterplot of exploration with SWL there are many more options you can play with for customization. I just included some basics here | ex_swl_scatter <- ggplot2::ggplot(eid_dat, aes(meim_ex_mean, swl_mean)) + geom_point() + ggtitle("My Scatterplot") + xlab("Ethnic Identity Exploration (mean)") + ylab("Satisfaction with Life (mean)") + geom_smooth(method="lm") ex_swl_scatter | Visualization | https://osf.io/9gq4a/ | Getting Started With R - Script Key.R |
921 | scatterplot of commitment with SWL | co_swl_scatter <- ggplot2::ggplot(eid_dat, aes(meim_co_mean, swl_mean)) + geom_point() + ggtitle("My Scatterplot") + xlab("Ethnic Identity Commitment (mean)") + ylab("Satisfaction with Life (mean)") + geom_smooth(method="lm") co_swl_scatter | Visualization | https://osf.io/9gq4a/ | Getting Started With R - Script Key.R |
922 | step 8: indepedent samples ttests also in base R. note that Welch's ttest is the default this set is testing for mean differences by whether they were born in the U.S. | t.test(eid_dat$meim_ex_mean ~ eid_dat$usborn) t.test(eid_dat$meim_co_mean ~ eid_dat$usborn) t.test(eid_dat$swl_mean ~ eid_dat$usborn) | Statistical Test | https://osf.io/9gq4a/ | Getting Started With R - Script Key.R |
923 | step 11: create a series of boxplots to go with the previous ANOVAs note that the code here is only slightly different from the one variable case you can/should add elements to format the plots, as you did previously | borngen_ex_boxplot <- ggplot2::ggplot(eid_dat, aes(usborn, meim_ex_mean, fill=firstgen)) + geom_boxplot(alpha = 0.5) borngen_ex_boxplot borngen_co_boxplot <- ggplot2::ggplot(eid_dat, aes(usborn, meim_co_mean, fill=firstgen)) + geom_boxplot(alpha = 0.5) borngen_co_boxplot borngen_swl_boxplot <- ggplot2::ggplot(eid_dat, aes(usborn, swl_mean, fill=firstgen)) + geom_boxplot(alpha = 0.5) borngen_swl_boxplot | Visualization | https://osf.io/9gq4a/ | Getting Started With R - Script Key.R |
924 | Add a plotting function to get power curve | plot_power_extend <- function(object, target = .80, ...) { nsim <- object[[1]]$n df <- purrr::map_dfr(object, powerinterval, .id = "n", ...) df$n <- as.integer(df$n) ggplot(df, aes(x = n, y = mean, group = 1)) + geom_hline(yintercept = target) + geom_smooth(method = "glm", formula = cbind(y * nsim, (1 - y) * nsim) ~ x, method.args = list(family = binomial("probit"))) + geom_pointrange(aes(ymin = lower, ymax = upper)) + labs(y = "power") + ylim(0, 1) } | Visualization | https://osf.io/6ya5d/ | Power_Analysis_OSF_22.R |
925 | check duplicate trials per participant (post) | xtabs(~subj+trial,data=rawdat.all) table(rawdat.all$subj) | Data Variable | https://osf.io/c93vs/ | exp02_prep.R |
926 | remove duplicate species per file, and species level data | data2.5 <- data2[!data2$species == 'Certhia_sp.',] data2.6 <- data2.5[!data2.5$species == 'Regulus_sp.',] data3 <- data2.6 %>% group_by(Plot_no) %>% mutate(whichday = as.integer(factor(date))) data4 <- data3 %>% group_by(Plot_no, filename) %>% mutate(seq=cur_group_id()) | Data Variable | https://osf.io/uq3cv/ | 4_Compute_beta_diversity_metrics.R |
927 | Show sample sizes per country | pa12_resp_s %>% group_by(CNT) %>% summarise(n = n()) | Visualization | https://osf.io/8fzns/ | 0_Data-Prep.R |
928 | Gaze Duration Descriptive stats per ID | BFSGDesc <- BirdFSG %>% group_by(ID, Stimuli) %>% summarise (MGaze = mean(Gaze), sd=sd(Gaze), n=n(), se = sd/sqrt(n)) ;; BFSGDesc$Stimuli <- paste( BFSGDesc$Stimuli, "S", sep="") BFSGDesc BNADDesc <- BirdNAD %>% group_by(ID, Stimuli) %>% summarise (MGaze = mean(Gaze), sd=sd(Gaze), n=n(), se = sd/sqrt(n)) ;; BNADDesc$Stimuli <- paste( BNADDesc$Stimuli, "S", sep="") BFSGDesc <- as.data.frame(BFSGDesc);; BNADDesc <- as.data.frame(BNADDesc);; BFSGDesc$Stimuli <- as.factor(as.character(BFSGDesc$Stimuli)) BNADDesc$Stimuli <- as.factor(as.character(BNADDesc$Stimuli)) BFSGDesc | Data Variable | https://osf.io/mhgcx/ | Figures for paper.R |
929 | p<.05 ONEWAY ANOVA let's say we're interested in investigating the relationship between three species (setosa, versicolor, virginica) outcome: sepal width run Levene's test to check assumption of homogeneity of variance by default centres variable using median library(car) leveneTest(Sepal.Width~Species, datairis,centermean) p>.05 therefore assumption met running oneway ANOVA | mod.a<-aov(Sepal.Width~Species, data=iris) summary(mod.a) | Statistical Test | https://osf.io/6g4js/ | Analyses_Section_4.R |
930 | generate a random number between 1 and 1000 that functions as the index into an array of random numbers of size 1000 | return(randNo[floor(runif(1)*1000)]) } | Data Variable | https://osf.io/fsbzw/ | functions.R |
931 | print the simulation number after every 10% of the simulations | if(s%%(sims/10) == 0){ cat(paste(" ", s)) } if(verbose){ print("",quote=FALSE) print("",quote=FALSE) print("=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-", quote=FALSE) print(paste(" Simulation", s, " "), quote=FALSE) print("=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-", quote=FALSE) } for(i in c(1:stages)){ if(i==picCreStage){ add.time(par.dat) if(verbose){ print(paste("------ Adding picture chunks -------"), quote=FALSE) } p.knopf[["ctime"]] = currTime add.chunk(p.knopf) p.flasche[["ctime"]] = currTime add.chunk(p.flasche) if(EXPT1){ p.ballon[["ctime"]] = currTime add.chunk(p.ballon) p.blume[["ctime"]] = currTime add.chunk(p.blume) } martin[["ctime"]] = currTime add.chunk(martin) sarah[["ctime"]] = currTime add.chunk(sarah) } if(verbose){ print("",quote=FALSE) print(paste("=============== ", "Stage ", i, ":", input.stages[i], " ==============="), quote=FALSE) } | Data Variable | https://osf.io/fsbzw/ | functions.R |
932 | mean level of transitive respondents per wave | aggregate(long_svo_multi$trans,list(long_svo_multi$wave_cat),FUN=mean,na.rm =T) | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
933 | create variable with only NA values | long_svo_multi$vlengths = rep(NA, times = 2970) | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
934 | calculate vector length per row | for (i in 1:2970) {long_svo_multi$vlengths[i]=calculate_vlength(mean_self[i], mean_other[i])} | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
935 | criterion to select applicable cases select only rows with transitive and good vector length response profiles as well as respondents with NA values this criterion used to select applicable cases for data analyses and figures | data_criterion <- (long_svo_multi$trans == "TRUE" & long_svo_multi$trans_vlenght == "TRUE" | is.na(long_svo_multi$trans) | is.na(long_svo_multi$trans_vlenght)) | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
936 | KolmogorovSmirnov ksamples test for SVO angles | ks.test(dropouts$SVO_angle, stayers$SVO_angle) ks.test(dropouts$SVO_angle, stayers$SVO_angle) ks.test(dropouts$SVO_angle, stayers$SVO_angle) ks.test(dropouts$SVO_angle, stayers$SVO_angle) ks.test(dropouts$SVO_angle, stayers$SVO_angle) | Statistical Test | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
937 | Fishersexact test for SVO types | fisher.test(table(dropouts$SVO_dicho_num),table( stayers$SVO_dicho_num)) fisher.test(table(dropouts$SVO_dicho_num),table( stayers$SVO_dicho_num)) fisher.test(table(dropouts$SVO_dicho_num),table( stayers$SVO_dicho_num)) fisher.test(table(dropouts$SVO_dicho_num),table( stayers$SVO_dicho_num)) fisher.test(table(dropouts$SVO_dicho_num),table( stayers$SVO_dicho_num)) | Statistical Test | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
938 | lagged variables of distance to 45 boundary in SVO | long_svo_multi$distance_45<-round(abs(45 - long_svo_multi$prior_SVO),digits = 2) | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
939 | alter a variable to label dropouts as 1 and stayers as 0 for ML analysis and this variable as dependent variable | data_adjusted$stay_dropout <- data_adjusted$change_cat data_adjusted$stay_dropout <- ifelse(data_adjusted$stay_dropout == 1,0, ifelse(data_adjusted$stay_dropout == 0,0,1)) data_adjusted$stay_dropout <- replace_na(data_adjusted$stay_dropout,value = 1) data_adjusted_1 <- data_adjusted %>% filter(trans == "TRUE" & trans_vlenght == "TRUE" | is.na(trans) | is.na(trans_vlenght)) | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
940 | grid arrange to create figure with distribution of angles and SVO categories | get_legend<-function(myggplot){ tmp <- ggplot_gtable(ggplot_build(myggplot)) leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") legend <- tmp$grobs[[leg]] return(legend)} bp <- theme(legend.position="none") | Visualization | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
941 | Assessing minor longitudinal differences in SVO angles select applicable cases and variables | adjust <-dplyr::select(long_svo_multi,id,SVO_angle,wave_cat,trans,trans_vlenght) data_input <- na.omit(adjust) data_input$SVO_angle <- round(data_input$SVO_angle, digits = 2) data_input <- data_input %>% filter(trans == "TRUE" & trans_vlenght == "TRUE") data_wide_2 <- dcast(data_input, id ~ wave_cat, value.var="SVO_angle") data_wide_2 <- na.omit(data_wide_2) | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
942 | cumulative change of difference in SVO angles wave per wave | data_wide_6$change_wave_1 <- data_wide_6$diff_w1 data_wide_6$change_wave_1_2 <- data_wide_6$diff_w1_w2 data_wide_6$change_wave_1_2_3 <- data_wide_6$change_wave_1_2 + data_wide_6$diff_w2_w3 data_wide_6$change_wave_1_2_3_4 <- data_wide_6$change_wave_1_2_3 + data_wide_6$diff_w3_w4 data_wide_6$change_wave_1_2_3_4_5 <- data_wide_6$change_wave_1_2_3_4 + data_wide_6$diff_w4_w5 data_wide_6$change_wave_1_2_3_4_5_6 <- data_wide_6$change_wave_1_2_3_4_5 + data_wide_6$diff_w5_w6 data_wide_7 <- data_wide_6[, c(1,8:13)] long_SVO_4 <- melt(data = data_wide_7, id.vars = c("id"), variable.name = "wave_compare", value.name = "cumulative_change_in_SVO") | Data Variable | https://osf.io/tw8dq/ | SVOSM_analyses_final.R |
943 | Set up ERGM formula and constraints | if (substr(thresh, 1, 4) == 'prop') { ergm_formula <- y ~ gwesp(0.75, fixed=TRUE) + gwnsp(0.75, fixed=TRUE) constraints <- ~edges } else { ergm_formula <- y ~ edges + gwesp(0.75, fixed=TRUE) + gwnsp(0.75, fixed=TRUE) constraints <- ~. } ergm_fit <- ergm(ergm_formula, constraints = constraints) f <- paste0("Output/Singles/", thresh, "/ergmFit_", sprintf("%03d",i), ".RDS") dir.create(dirname(f), showWarnings = FALSE, recursive = TRUE) saveRDS(bergm_fit, f) | Statistical Modeling | https://osf.io/5nh94/ | 01b_fit_single_ergm.R |
944 | min and max age, mean and sd age, percentage of men and women | minAge = min(df_preQ$age) maxAge = max(df_preQ$age) meanAge = mean(df_preQ$age) sdAge = sd(df_preQ$age) females = length(which(df_preQ$gender == "female")) males = length(which(df_preQ$gender == "male")) other = length(which(df_preQ$gender == "other")) | Data Variable | https://osf.io/xh36s/ | questionnaires_analyses.R |
945 | Check normality with QQ plot and ShapiroWilk test Build the linear model | model <- lm(FW ~ condition, data = df_postQ) | Statistical Test | https://osf.io/xh36s/ | questionnaires_analyses.R |
946 | Visualize correlations Insignificant correlations are leaved blank | corrplot(res_cor$r, method = 'number', type="upper", order="hclust", p.mat = res_cor$P, sig.level = 0.05, insig = "blank") | Visualization | https://osf.io/xh36s/ | questionnaires_analyses.R |
947 | plot a correlation matrix with all the different measures Create a dataframe with all the different measures of above | df_corM <- data.frame(df_postQ$FW, df_postQ$DU, df_postQ$arousal, df_postQ$valence, df_postQ$control, df_postQ$responsibility, df_diff$Diff) colnames(df_corM) <- c('FW', 'DU', 'arousal', 'valence', 'control', 'responsibility', 'Diff') | Visualization | https://osf.io/xh36s/ | questionnaires_analyses.R |
948 | calculate posterior draws for regression lines | experiment_dat_virus <- dat[dat$material == material, ] print(experiment_dat_virus) experiment_dat_virus <- experiment_dat_virus %>% summarise(detection_limit = 10^first(detection_limit_log10_titer)) print(experiment_dat_virus) mat_dat <- dat[dat$material == material, ] if(material != "Aerosols") { scaling <- 1 ylab_expression <- expression("titer (TCID"[50] * "/mL media)") max_x <- mat_dat %>% group_by(trial_unique_id, replicate) %>% filter(log10_titer == detection_limit_log10_titer) %>% select(time, trial_unique_id, replicate) %>% summarise(min_time = min(time)) %>% ungroup() %>% select(min_time) %>% max() } else { scaling <- 10 / 3 ## convert to tcid50/L air ylab_expression <- expression("titer (TCID"[50] * "/L air)") max_x <- max(mat_dat$time) } print(max_x) plot_times <- dat %>% data_grid(time = seq_range(c(0, max_x), n = fineness)) print(material) | Statistical Modeling | https://osf.io/fb5tw/ | figure_individual_fits.R |
949 | draw n_lines random regression lines | func_samples <- tidy_draws %>% group_by(trial_unique_id, replicate) %>% sample_n(n_lines) %>% ungroup() print(func_samples) | Visualization | https://osf.io/fb5tw/ | figure_individual_fits.R |
950 | cross product decay_rates with x (time) values and calculate y (titer) values | to_plot <- func_samples %>% crossing(plot_times) to_plot <- to_plot %>% mutate(predicted_titer = scaling * 10^(intercept - decay_rate * time)) dat <- dat[dat$material == material, ] max_titer <- scaling * max(dat$titer) | Data Variable | https://osf.io/fb5tw/ | figure_individual_fits.R |
951 | this function accepts a column containing hitnames, a target hitname to look for, and a ... starting and ending fixation index | is_hitname_in_range <- function(vec, hitname, fi_start, fi_end) { if (!"fi_pairs" %in% ls(envir = .GlobalEnv)) { fi_pairs <- get_fixationindex_pairs(df$FixationIndex) | Data Variable | https://osf.io/mp9td/ | is_hitname_in_range.R |
952 | 0 get sensing/location data for the specific user | sensing = dplyr::tbl(phonestudy, "ps_activity") %>% dplyr::filter(user_id %in% user) %>% dplyr::filter(!activityName %in% c("PHONESTUDY", "DNAPSOUND", "DNAPACCELEROMETER", "DNAPLIGHT", "DNAPPROXIMITY", "DNAPGYROSCOPE")) %>% dplyr::mutate(timestamp = as.character(timestamp), created_at = as.character(created_at), updated_at = as.character(updated_at)) %>% data.frame() sensing$user_id = as.character(sensing$user_id) | Data Variable | https://osf.io/b7krz/ | Enrichment_GPS_POIs_HERE_API.R |
953 | Creates the variable 'distances', a 540 X 540 distance matrix between stimuli | coordinates = read.xlsx("540_coordinates.xlsx", colNames = TRUE) coordinates = as.matrix(unname(coordinates)) coordinates = coordinates[,2:9] distances = as.matrix(dist(coordinates)) | Data Variable | https://osf.io/hrf5t/ | runHierarchicalGCM.R |
954 | Number of subjects in each group Create a group variable according to each cluster condition | if (size == 1){ N.size = N/K n.group = unlist(lapply(1:K, function(k) rep(k,N.size))) } if (size == 2){ if (K == 2){ N.1 = 0.10*N N.2 = N - N.1 n.group = c(rep(1,N.1),rep(2,N.2)) } if (K == 4){ N.1 = 0.10*N N.rest = N - N.1 N.size = N.rest/(K-1) n.group = c(rep(1,N.1),rep(2,N.size),rep(3,N.size),rep(4,N.size)) }} if (size == 3){ if (K == 2){ N.1 = 0.6*N N.2 = N - N.1 n.group = c(rep(1,N.1),rep(2,N.2)) } if (K == 4){ if (N == 20){ N.1 = 0.6*N N.rest = N - N.1 N.size = floor(N.rest/(K-1)) n.group = c(rep(1,N.1),rep(2,N.size),rep(3,N.size+1),rep(4,N.size+1)) } else{ N.1 = 0.6*N N.rest = N - N.1 N.size = N.rest/(K-1) n.group = c(rep(1,N.1),rep(2,N.size),rep(3,N.size),rep(4,N.size)) }}} | Data Variable | https://osf.io/rs6un/ | Data.Cluster.VAR.Fixed.R |
955 | make a blank output table to hold the derive stats, and fill it up | out.tbl <- data.frame(array(NA, c(800, 5)));; # just make it big for now colnames(out.tbl) <- c("load.type", "cat.type", "trial.type", "stat.name", "stat.value");; ctr <- 1;; | Data Variable | https://osf.io/p6msu/ | create_output_behavioral.R |
956 | creating healthcare / containment variable | measures_new <- measures_new %>% mutate(measure_category = if_else(str_starts(measure,"H"), "Healthcare", "Containment")) | Data Variable | https://osf.io/scn62/ | three countries plot.R |
957 | Number of subject in Group 0 | N0.subject = 2*N0.dyad | Data Variable | https://osf.io/vtb9e/ | Sim.Dyad.Model.3.R |
958 | Exclude data from students who changed class or school during the school year. | quop2$exclusion[quop2$change>0] <- 1 | Data Variable | https://osf.io/vphyt/ | Prepare_wst_data_OSF.R |
959 | create date variable for birthday | quop2$s_birth_date <- as.Date(quop2$s_birth, format = "%d.%m.%Y") | Data Variable | https://osf.io/vphyt/ | Prepare_wst_data_OSF.R |
960 | set gavariables to NA if they have negative times where there are negative times recorded in the gqcvariables, use the corresponding gavariable value instead (hoping it is not negative) (!: ga also contains instruction pages) first and last item (one per page) between the instruction pages | js_start = c(2, 23, 37) js_end = c(21, 35, 49) for(i in 1:8){ for(j in 1:length(js_start)){ for(k in js_start[j]:js_end[j]){ eval(parse(text=paste0("quop_use$t",i,"_gqc",k-j,"<- ifelse(quop_use$t",i,"_gqc",k-j,"<=0,quop_use$t",i,"_ga",k,", quop_use$t",i,"_gqc",k-j,")"))) } } } | Data Variable | https://osf.io/vphyt/ | Prepare_wst_data_OSF.R |
961 | Creat file paths for the raw data and the csv files that you get at the end | file_path = 'data_fullstudy1.txt' file_path2 = 'behavioral.csv' file_path3 = 'questionnaires.csv' file_path4 = 'boxes.csv' | Data Variable | https://osf.io/xh36s/ | preprocessing.R |
962 | Create loop for every participant, put the relevant data into the dataframe | con <- file(file_path, open = "r") on.exit(close(con)) lines <- readLines(con) subjects_data <- list() game_data <- list() boxes_data <- list() subj <- 0 for (line in lines) { if (grepl("Enter your Prolific ID", line, fixed = TRUE)) { subj = subj + 1 metadata_beginning <- fromJSON(str_replace(line, "\\}\\{", ",")) subj_data <- "" | Data Variable | https://osf.io/xh36s/ | preprocessing.R |
963 | Recode NAs to 0 for response frequency tables | recodeNAto0 <- function(var) { case_when(is.na(var) ~ 0, T ~ var) } | Data Variable | https://osf.io/w4gey/ | 03_descriptive-analysis.R |
964 | Compute response frequency table for recoded items | proptable <- function(var) { table(ds$country_name, var) %>% addmargins() %>% data.frame() %>% rename(country = 1, response = 2, prop = 3) %>% spread(response, prop) %>% mutate(`0` = `0`/Sum, `1` = `1`/Sum, `2` = `2`/Sum, `3` = `3`/Sum, `4` = `4`/Sum, `5` = `5`/Sum) } | Data Variable | https://osf.io/w4gey/ | 03_descriptive-analysis.R |
965 | Make density ridge plot | ggplot(data = brmsmeans_antisci_cntr_post, aes(x = antisci_mean, y = fct_reorder(country_name, antisci_mean, .fun = mean), fill = factor(continent))) + stat_density_ridges(inherit.aes = T, calc_ecdf = F, quantile_lines = T, quantiles = 2, alpha = 0.7, scale = 3.5) + stat_summary(aes(label = paste0(sprintf("%0.2f", round(..x.., 2)), " [", sprintf("%0.2f", round(brmsmeans_hdi_l, 2)), ", ", sprintf("%0.2f", round(brmsmeans_hdi_h, 2)), "]")), geom = "text", size = 3, hjust = 0, color = "black", position = position_nudge(x = 6.7 - brmsmeans_means)) + scale_fill_viridis_d(name = "Continent", option = "inferno", begin = 0.1, end = 0.9, direction = -1) + coord_cartesian(xlim = c(3.7, 6.3), clip = "off") + ggtitle(label = "Posterior probability distributions of anti-science attitudes across countries", subtitle = "Annotations provide distribution means and 89% HDIs") + xlab("Anti-science attitudes") + ylab("") + theme_minimal() + theme(plot.margin = unit(c(1, 10, 1, 1), "lines"), legend.position = "bottom") | Visualization | https://osf.io/w4gey/ | 03_descriptive-analysis.R |
966 | extract the head and convert it to image | extract_pdf_top <- function(pdf_path) { page_img <- image_read_pdf(pdf_path, page = 1, density = 72) width <- image_info(page_img)$width height <- image_info(page_img)$height left <- 0 top <- 75 height <- height / 4 image_crop(page_img, geometry = sprintf("%fx%f+%f+%f", width, height, left, top)) } dontcare <- first_page_paths %>% map(extract_pdf_top) %>% map2(png_paths, image_write) | Data Variable | https://osf.io/csy8q/ | process_pdf.R |
967 | Figures function to create data summaries in figures calculating means and cis for the plot | ci <- function(x) (sd(x)/sqrt(length(x))*qt(0.975,df=length(x)-1) ) #function to compute size of confidence intervals data_summary <- function(x) { m <- mean(x) ymin <- m-ci(x) ymax <- m+ci(x) return(c(y=m,ymin=ymin,ymax=ymax)) } | Visualization | https://osf.io/mj5nh/ | politicalknowledgeestimatecentralitydefaultsatleast6.R |
968 | median thickness of new snow | medianThicknessNewSnow <- sapply(avgSP$sets, function(set) { median(sapply(set, function(sp) { sum(sp$layers$thickness[findPWL(sp, pwl_gtype = c("PP", "DF"))]) })) }) lines(avgSP$meta$date, avgSP$meta$hs_median - medianThicknessNewSnow, lty = "dashed", lwd = 1) avgSP$avgs <- snowprofileSet(lapply(avgSP$avgs, function(avg) { avg$layers$percentage <- avg$layers$ppu_all avg })) plot(avgSP$avgs[avgSP$meta$date >= xdaterange[1] & avgSP$meta$date <= xdaterange[2]], ColParam = "percentage", add = TRUE, yaxis = FALSE, ylab = "") legend(as.Date("2018-09-23"), 190, c("<HS>", "<NEW>", "PP", "DF", "SH", "DH", "FC", "FCxr", "RG", "MF", "MFcr"), lty = c("solid", "dashed", rep(NA, 9)), lwd = 2, col = c(rep("black", 2), getColoursGrainType(c("PP", "DF", "SH", "DH", "FC", "FCxr", "RG", "MF", "MFcr"))), pch = c(NA, NA, rep(15, 9)), pt.cex = 2.5, density = c(rep(0, 11)), border = "transparent", horiz = FALSE, bty = "o", box.lwd = 0, cex = 1.4) dev.off() | Data Variable | https://osf.io/w7pjy/ | figures_paper.R |
969 | Means and SDs of TOTAL LT TO THE SCREEN in the outcome phase (Okumura) Table 2 in the main manuscript: for mean.overall.data (analogously to the boxplots) | mean.overall.data %>% group_by(Condition) %>% summarise(mean=mean(LTScreenOut), sd=sd(LTScreenOut), na.rm = TRUE) %>% as.data.frame(.) %>% dplyr::mutate_if(is.numeric, round, 3) | Data Variable | https://osf.io/mp9td/ | Stats_Third.R |
970 | checking disctribution of the dependent variable | hist(overall.data$LTScreenOut) hist(overall.data$LTObjectOut) hist(overall.data$FirstLookDurationObjectOut) | Data Variable | https://osf.io/mp9td/ | Stats_Third.R |
971 | reduced model revealed a convergence warning, with high SDs for TrialRun and Concontext (random effects). model with simpler random effect structure revealed similar estimates suggesting that the warning can be ignored | red6_2 <- glmer(FirstLookDurationObjectOut ~ ConContext + Identity_change + Location_change + z.TrialRun + z.TrialCon + ObjectPosAct + (1 + z.TrialCon + ObjectPosAct | ID) , data=overall.data, family=Gamma(link=log), control=contr) summary(red6_2) summary(red6) | Statistical Modeling | https://osf.io/mp9td/ | Stats_Third.R |
972 | Test the difference between correlations of the same skills vs. different skills based on multiple imputation | names(Data_Table2a)[4]<-"Bad_news" m <- 'Persuasion ~~ v1*Persuasion + s1*Unreasonable + d1*Crisis + d2*Bad_news + d3*Presentation + d4*Mistake Unreasonable ~~ v2*Unreasonable + d5*Crisis + d6*Bad_news + d7*Presentation + d8*Mistake Crisis ~~ v3*Crisis + s2*Bad_news + d9*Presentation + d10*Mistake Bad_news ~~ v4*Bad_news + d11*Presentation + d12*Mistake Presentation ~~ v5*Presentation + s3*Mistake Mistake ~~ v6*Mistake | Statistical Test | https://osf.io/jy5wd/ | Code.R |
973 | compute boxplot characteristics | x <- boxplot(rep.int(yn, wn), plot = FALSE) top_vp <- viewport(layout = grid.layout(nrow = 2, ncol = 3, widths = unit(c(ylines, 1, 1), c("lines", "null", "lines")), heights = unit(c(1, 1), c("lines", "null"))), width = unit(1, "npc"), height = unit(1, "npc") - unit(2, "lines"), name = paste("node_boxplot", nid, sep = ""), gp = gp) pushViewport(top_vp) grid.rect(gp = gpar(fill = bg, col = 0)) top <- viewport(layout.pos.col = 2, layout.pos.row = 1) pushViewport(top) if (is.null(mainlab)) { mainlab <- if (id) { function(id, nobs) sprintf("[%s] nWKL = %s", # Node %s id, length(unique(VS_$wkl_uuid[fitted_node(obj$node, obj$data) == nid]))) # id, nobs | Visualization | https://osf.io/w7pjy/ | node_violinplot.R |
974 | Calculate to and from percentages | from_id <- unique(AbbyLinks$from) for (i in 1:length(from_id)) { AbbyLinks$perc_from[AbbyLinks$from == from_id[i]] <- AbbyLinks$n[AbbyLinks$from == from_id[i]]/sum(AbbyLinks$n[AbbyLinks$from == from_id[i]]) } to_id <- unique(AbbyLinks$to) for (i in 1:length(to_id)) { AbbyLinks$perc_to[AbbyLinks$to == to_id[i]] <- AbbyLinks$n[AbbyLinks$to == to_id[i]]/sum(AbbyLinks$n[AbbyLinks$to == to_id[i]]) } rm(i, from_id, to_id) head(AbbyLinks, 10) | Data Variable | https://osf.io/rtmyx/ | 05_PerceptionAnalysis_AllClassSolutions_V230401.R |
975 | Generate Data Generate the outcome (y) and mediator (m) in the population with a correlation of b, variances of 1, and means of 0. | sigma <- rbind(c(1, b), c(b, 1)) mu <- c(0, 0) df <- as.data.frame(mvrnorm(n = n, mu = mu, Sigma = sigma)) names(df) <- c("y", "m") | Data Variable | https://osf.io/975k3/ | med.validation.R |
976 | create a plot that illustrats: Accuracy, Kappa, AUROC and MCC | plot_3 <- methods_plot %>% filter(indices %in% c("Accuracy", "Kappa", "AUROC" , "MCC")) ggplot(plot_3,aes(x=variable,y=value,fill=reorder(indices,value))) + geom_bar(stat = "identity",position = "dodge",color="black") + xlab("") + ylab("in %") + ggtitle("") + scale_fill_brewer(palette = "Pastel1",name="") + theme_bw() + theme(legend.position="bottom") + theme(legend.title=element_blank()) + theme(plot.title = element_text(hjust = 0.5)) + scale_y_continuous(breaks = c(0,12.5,25,37.5,50,62.5,75,87.5,100),limits = c(0,95)) + theme(axis.text.x = element_text(angle=30, hjust = 1, vjust = 1, size = 12)) + theme(axis.text.y = element_text( size = 12)) + theme(axis.title.y = element_text( size = 12)) + theme(legend.title = element_text( size = 12 )) | Visualization | https://osf.io/cqsr8/ | plots.R |
977 | round all numeric variables x: data frame digits: number of digits to round | numeric_columns <- sapply(x, class) == 'numeric' x[numeric_columns] <- round(x[numeric_columns], digits) x } | Data Variable | https://osf.io/7z3mk/ | t1-stan-5.R |
978 | M, SD, range of key sociodemographic variables (across countries) | summstats(ds, age, country_name) %>% print(n = nrow(.)) summstats(ds, sex_rec, country_name) %>% print(n = nrow(.)) summstats(ds, edu_9cat, country_name) %>% print(n = nrow(.)) summstats(ds, income_10cat, country_name) %>% print(n = nrow(.)) | Data Variable | https://osf.io/w4gey/ | 01_setup.R |
979 | plot 95% credible intervals | x<-plot(me, plot = FALSE)[[1]] + scale_color_grey() + scale_fill_grey() x+ylim(0,1)+ theme(panel.grid.major = element_line(colour="gray"), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_blank(),panel.grid.major.x = element_blank())+xlab("")+ylab("") | Visualization | https://osf.io/a8htx/ | SSK_Cleaned.R |
980 | Calculating Bayes Factors for effects | bayes_factor(xfit1,xfit2) bayes_factor(xfit1,xfit3) | Statistical Test | https://osf.io/a8htx/ | SSK_Cleaned.R |
981 | plot of abstractlevel rating averages Scatterplot with overlaid box | eval.plot <- ggplot(abstract.plot, aes(y=eval, x=target.f, color=target.f)) + geom_jitter(aes(colour=target.f)) + geom_boxplot(outlier.shape = NA, alpha=0.5) eval.plot <- eval.plot + theme_bw() + scale_colour_manual(values=c("#9E2E2E","royalblue4")) + scale_x_discrete( labels = c("Conservatives", "Liberals") ) + scale_y_continuous(limits = c(1, 7), expand = c(0,0)) + labs(y="Evaluative Rating", x="") + theme( text = element_text(size=16), panel.grid.major.x = element_blank(), legend.position = "none" ) explain.plot <- ggplot(abstract.plot, aes(y=explain, x=target.f, color=target.f)) + geom_jitter(aes(colour=target.f)) + geom_boxplot(outlier.shape = NA, alpha=0.5) explain.plot <- explain.plot + theme_bw() + scale_colour_manual(values=c("#9E2E2E","royalblue4")) + scale_x_discrete( labels = c("Conservatives", "Liberals") ) + scale_y_continuous(limits = c(1, 7), expand = c(0,0)) + labs(y="Explanatory Rating", x="") + theme( text = element_text(size=16), panel.grid.major.x = element_blank(), legend.position = "none" ) grid.arrange(eval.plot,explain.plot, nrow = 1) | Visualization | https://osf.io/zhf98/ | abstract ratings analysis.r |
982 | plot the raw data and the 95% HPDI from m.arithmetic | d.gg.math <- d.math.agg d.gg.math$mean <- NA d.gg.math$low_ci <- NA d.gg.math$high_ci <- NA | Visualization | https://osf.io/7vbj9/ | Analyses_Confirmatory.R |
983 | Linear mixedeffects model for reproduction bias | mod_full <- lmer(Prct_Bias ~ ContextC*(GMSI_Gen_Z + GroupC*OrderC*Distort) + (ContextC | Subject), data=dat2) summary(mod_full) Anova(mod_full, type=3, test='Chisq') # Wald tests | Statistical Modeling | https://osf.io/wxgm5/ | Exp1_complete.R |
984 | Simple slopes: Model for testing effect of Context at high GMSI | mod_1 <- lmer(Prct_Bias ~ ContextC*(GMSI_Gen_hi + GroupC*OrderC*Distort) + (ContextC | Subject), data=dat2) summary(mod_1) Anova(mod_1, type=3, test='Chisq') | Statistical Modeling | https://osf.io/wxgm5/ | Exp1_complete.R |
985 | Add informaiton on species + condition to each row of dplot | gramXspec <- as.factor(c(rep("Bird AD", 3), rep("Bird NAD", 3))) grammar <- as.factor(c(rep("AD", 3), rep("NAD", 3))) species <- as.factor(c(rep("Bird", 6))) dplot $ Condition <- as.factor(grammar) ;; dplot$Species <- as.factor(species) ;; dplot $ gramXspec <- as.factor(gramXspec) dplot | Visualization | https://osf.io/mhgcx/ | Bird AGL - Outputs and plots.R |
986 | exclude App Spirituality features (are accidentally still created in the data set as empty variables) | sensing = sensing %>% dplyr::select(!matches("Spirituality"), -date) | Data Variable | https://osf.io/b7krz/ | 04_SOURCE_ExclusionCriteria.R |
987 | Porportion of trials missed within each block, for each subj | miss.blk <- with(data, tapply(trialError, list(subj, data$block), function(x) sum(x!="FALSE") / length(x))) | Data Variable | https://osf.io/tbczv/ | 02-exclCriteria.r |
988 | plot fit model marginal_effects( FIT ) compute marginal means and average marginal effects | mu_happy = rowMeans(getCAT_fitted_mean(FIT , 'emotion' , 'happy' )) mu_angry = rowMeans(getCAT_fitted_mean(FIT , 'emotion' , 'angry' )) mu_neutral = rowMeans(getCAT_fitted_mean(FIT , 'emotion' , 'neutral' )) contrast_mu_angry_neutral = mu_angry-mu_neutral contrast_mu_happy_neutral = mu_happy-mu_neutral contrast_mu_angry_happy = mu_angry - mu_happy | Visualization | https://osf.io/dkq3f/ | eda_brms.R |
989 | Add column for centered logtransformed time series | habsos.ts$ctr <- habsos.ts$log10_CELLS - mean(habsos.ts$log10_CELLS) head( habsos.ts ) | Data Variable | https://osf.io/ajf3h/ | 02generateKbrevistimeseries.R |
990 | Custom functions 1. Data management 1.1 Build mean indices from multiple variables | mean_index <- function (df, name, vars) { M1 <- dplyr::select(df, vars) M2 <- rowMeans(M1, na.rm = TRUE) M2 <- tibble::tibble(M2) colnames(M2) <- name df <- dplyr::bind_cols(df, M2) return(df) } | Data Variable | https://osf.io/w97h4/ | Paper_functions.R |
991 | 2. Stats 2.1 Calculate standard error (se_func) | se_func <- function(var) { sd <- sd(var) n <- length(var) se <- sd / sqrt(n) return(se) } | Statistical Test | https://osf.io/w97h4/ | Paper_functions.R |
992 | Calculate confidence interval (upper bound) | upper_ci_func <- function(var) { m <- mean(var) sd <- sd(var) n <- length(var) se <- sd / sqrt(n) lower_ci <- m + qt(1 - (0.05 / 2), n - 1) * se return(lower_ci) } | Statistical Test | https://osf.io/w97h4/ | Paper_functions.R |
993 | 2.6 Bayes Factor paired ttest (func_ttest_paired_bf) | func_ttest_paired_bf <- function(pre = df_merge1_s3$paffect_pre, post = df_merge1_s3$paffect_post, dv = "paffect") { | Statistical Test | https://osf.io/w97h4/ | Paper_functions.R |
994 | calculate pvalues from ttests | tee <- with(df, t.test(formula = dep_var ~ group_var, paired = FALSE, alternative = side)) return(tee) } tee <- with(df, t.test(x = var_pre, y = var_post, paired = TRUE, alternative = side)) } tee <- with(df, t.test(x = var_pre, y = var_post, paired = TRUE, alternative = side)) tee <- tee[["statistic"]][["t"]] effsize <- tee / sqrt(length(var_pre)) return(effsize) } | Statistical Test | https://osf.io/w97h4/ | Paper_functions.R |
995 | impute missing values with the median of the respective variable | phonedata <- impute(phonedata, target = "Soci", classes = list(numeric = imputeMedian(), integer = imputeMedian()))$data | Data Variable | https://osf.io/9mc84/ | preprocessing.R |
996 | Print percents of stuff (used for displaying study demographics) | print.percents <- function(x) { t <- as.data.frame(sort(table(as.character(x)), decreasing = T)) t$Percent <- round(t$Freq/sum(t$Freq)*100) colnames(t) <- c("", "n", "%") print(t) } | Visualization | https://osf.io/zh3f4/ | misc.helpers.R |
997 | Linear mixed effect model (RTs) 1000/RT as preregistered | LDTword_LME = lmer(-1000/RT ~ primec + (1|item) + (1+primec|subject), data = byTrial, contrasts = list(primec = cc1), control=lmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5))) summary(LDTword_LME) | Statistical Modeling | https://osf.io/gztxa/ | Vowel_Harmony_LDT_Naming.R |
998 | Exploratory: Linear mixed effect model (RTs) with AuthorTest_Finnish | LDTword_LME_ARF = lmer(-1000/RT ~ primec*AR_Finnish + (1|item) + (1|subject), data = byTrial, contrasts = list(primec = cc1), control=lmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5))) summary(LDTword_LME_ARF) plot(allEffects(LDTword_LME_ARF), x.var = "AR_Finnish") | Statistical Modeling | https://osf.io/gztxa/ | Vowel_Harmony_LDT_Naming.R |
999 | Linear mixed effect model (RTs) nonwords | LDTword_LMEnw = lmer(-1000/RT ~ primec + (1|item) + (1+primec|subject), data = byTrialnw, contrasts = list(primec = cc1), control=lmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5))) summary(LDTword_LMEnw) | Statistical Modeling | https://osf.io/gztxa/ | Vowel_Harmony_LDT_Naming.R |
1,000 | Linear mixed effect model (RTs) | Nword_LME = lmer(-1000/RT ~ primec + (1|item) + (1+primec|subject), data = nbyTrial, contrasts = list(primec = cc1), control=lmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5))) summary(Nword_LME) | Statistical Modeling | https://osf.io/gztxa/ | Vowel_Harmony_LDT_Naming.R |
Subsets and Splits